Skip to main content

Advertisement

Log in

Apriori decay estimates for Hardy–Sobolev–Maz’ya equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this article we establish sharp decay estimates of solutions to the Euler–Lagrange equation corresponding to the Hardy–Sobolev–Maz’ya inequality with cylindrical weights on both sides,

$$\begin{aligned} -{\text {div}}\left( |y|^{-r} |\nabla u|^{p-2}\nabla u\right) = f(x,u), \, \text { for } u \in D^{1,p}({\mathbb {R}}^n, |y|^{-r}) \end{aligned}$$

where, \(p \in (1,n)\), \(n \ge 2\), \(1 \le k < n\), \({\mathbb {R}}^n= {\mathbb {R}}^k \times {\mathbb {R}}^{n-k}\), \(x = (y,z) \in {\mathbb {R}}^k \times {\mathbb {R}}^{n-k}\), \(f : {\mathbb {R}}^n\times {\mathbb {R}}\rightarrow {\mathbb {R}}\) is a Caratheodory function satisfying the bounds \(|f(x,t)| \le \Lambda |t|^{p_{r,s}^*- 1} |y|^{-s}\) for some \(\Lambda > 0\), \(p_{r,s}^*\in (p, p^*]\) denotes the critical exponent \(p_{r,s}^*= \frac{p(n-s)}{n-p-r}\) with parameters \(r, s < k\) when \(k \ge 2\) (additionally assume \(r \in (-(p-1),\min (1, n-p))\) when \(k=1\)). Using the sharp asymptotics we establish existence of positive solutions of a Brézis-Nirenberg problem involving lower order perturbations of Hardy–Sobolev equation in a smooth bounded domain containing origin. We show that the problem

$$\begin{aligned} -\Delta _p u = \frac{|u|^{p_s^*- 2}u}{|y|^s} + \rho (u), u \ge 0 \text { in } \Omega \end{aligned}$$

for \(u \in W_{0}^{1,p}(\Omega )\) has a solution for a class of \(C^1\) odd functions \(\rho \) when \(n > p^2\) and \(\displaystyle \int _{{\mathbb {R}}^n} {\tilde{\rho }} \left( |x|^{-\frac{n-p}{p-1}}\right) \,dx > 0\) where, \(\displaystyle {\tilde{\rho }}(t) = \int _{0}^t \rho (r)\,dr\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellaoui, B., Felli, V., Peral, I.: Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., (8) 9(2), 445–484 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Adimurthi, G Mancini, Sandeep, K.: A sharp solvability condition in higher dimensions for some Brézis-Nirenberg type equation. Calc. Var. Part. Differ. Eq. 14(3), 275–317 (2002)

    Article  Google Scholar 

  3. Badiale, M., Tarantello, G.: A Sobolev–Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics. Arch. Ration. Mech. Anal. 163(4), 259–293 (2002)

    Article  MathSciNet  Google Scholar 

  4. Björn, J.: Poincaré inequalities for powers and products of admissible weights. Ann. Acad. Sci. Fenn. Math. 26(1), 175–188 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Björn, J., Buckley, S.M., Keith, S.: Admissible measures in one dimension. Proc. Amer. Math. Soc. 134, 703–705 (2006)

    Article  MathSciNet  Google Scholar 

  6. Boccardo, L., Murat, F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19(6), 581–597 (1992)

    Article  MathSciNet  Google Scholar 

  7. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  8. Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42(3), 271–297 (1989)

    Article  MathSciNet  Google Scholar 

  9. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53(3), 259–275 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Cao, D., Li, Y.: Results on positive solutions of elliptic equations with a critical Hardy–Sobolev operator. Methods Appl. Anal. 15(1), 81–95 (2008)

    Article  MathSciNet  Google Scholar 

  11. Chua, S.-K.: Weighted Sobolev inequalities on domains satisfying the chain condition. Proc. Amer. Math. Soc. 117(2), 449–457 (1993)

    Article  MathSciNet  Google Scholar 

  12. Dyda, B., Ihnatsyeva, L., Lehrback, J., Tuominen, H., Vahakangas, A.V.: Muckenhoupt \(A_p\)-properties of distance functions and applications to Hardy–Sobolev-type Inequalities. Potential Anal. 50(1), 83–105 (2019)

    Article  MathSciNet  Google Scholar 

  13. Mancini, G., Fabbri, I., Sandeep, K.: Classification of solutions of a critical Hardy–Sobolev operator. J. Differ. Equ. 224(2), 258–276 (2006)

    Article  MathSciNet  Google Scholar 

  14. Gazzini, M., Musina, R.: On a Sobolev-type inequality related to the weighted \(p\)-Laplace operator. J. Math. Anal. Appl. 352(1), 99–111 (2009)

    Article  MathSciNet  Google Scholar 

  15. Heinonen, J., Kilpelainen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, p. 404. Dover Publications, Mineola, NY (2006)

    MATH  Google Scholar 

  16. Kichenassamy, S., Véron, L.: Singular solutions of the \(p\)-Laplace equation. Math. Ann. 275(4), 599–615 (1986)

    Article  MathSciNet  Google Scholar 

  17. Mallick, A.: Extremals for fractional order Hardy-Sobolev-Maz’ya inequality. Calc. Var. Partial Differential Equations 58 (2019), Art. 45, 37 pp

  18. Mancini, G., Sandeep, K.: On a semilinear elliptic equation in \({\mathbb{H}}^n\). Ann. Sc. Norm. Super. Pisa Cl. Sci (5), 7(4), 635–671 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Maz’ya, V.: Sobolev Spaces. Springer, Berlin (2011)

    Book  Google Scholar 

  20. Mozer, J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13(3), 457–468 (1960)

    Article  MathSciNet  Google Scholar 

  21. Musina, R.: Existence of extremals for the Maz’ya and for the Caffarelli–Kohn–Nirenberg inequalities. Nonlinear Anal. 70(8), 3002–3007 (2009)

    Article  MathSciNet  Google Scholar 

  22. Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Differ. Geometry 72(6), 247–258 (1971)

    MathSciNet  MATH  Google Scholar 

  23. Oliva, F., Sciunzi, B., Vaira, G.: Radial symmetry for a quasilinear elliptic equation with a critical Sobolev growth and Hardy potential. J. Math. Pures Appl. 140, 89–109 (2020)

    Article  MathSciNet  Google Scholar 

  24. Peral, I.: Multiplicity of solutions for the p-Laplacian. Lecture Notes at the Second School on Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, (1997)

  25. Sciunzi, B.: Classification of positive \({\cal{D}}^{1, p}(\mathbb{R}^N)\)-solutions to the critical \(p\)-Laplace equation in \(\mathbb{R}^N\). Adv. Math. 291, 12–23 (2016)

    Article  MathSciNet  Google Scholar 

  26. Shakerian, S., Vétois, J.: Sharp pointwise estimates for weighted critical \(p\)-Laplace equations. Nonlinear Anal. 206, 112236 (2021). (18 pp)

    Article  MathSciNet  Google Scholar 

  27. Stampacchia, G.: Équations elliptiques du second ordre à coefficients discontinus. (French) Séminaire de Mathématiques Supérieures, No. 16 (Été, 1965) Les Presses de l’Université de Montréal, Montreal, Que. 1966 326 pp. 35.45

  28. Terracini, S.: On positive entire solutions to a class of equations with a singular coefficient and critical exponent. Adv. Differ. Equ. 1, 241–264 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Tertikas, A., Tintarev, K.: On existence of minimizers for the Hardy–Sobolev–Maz’ya inequality. Ann. Mat. Pura Appl. (4) 186(4), 645–662 (2007)

    Article  MathSciNet  Google Scholar 

  30. Trudinger, N.S.: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 27(3), 265–308 (1973)

    MathSciNet  MATH  Google Scholar 

  31. Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20, 721–747 (1967)

    Article  MathSciNet  Google Scholar 

  32. Vassilev, D.: \(L^p\) estimates and asymptotic behavior for finite energy solutions of extremals to Hardy–Sobolev inequalities. Trans. Amer. Math. Soc. 363(1), 37–62 (2011)

    Article  MathSciNet  Google Scholar 

  33. Véron, L.: Singularities of solutions of second order quasilinear equations Pitman Res. Notes in Math., 353, Longman (1996)

  34. Vétois, J.: A priori estimates and application to the symmetry of solutions for critical p-Laplace equations. J. Differ. Equ. 260(1), 149–161 (2016)

    Article  MathSciNet  Google Scholar 

  35. Xiang, C.-L.: Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential. J. Differ. Equ. 259(8), 3929–3954 (2015)

    Article  MathSciNet  Google Scholar 

  36. Xiang, C.-L.: Gradient estimates for solutions to quasilinear elliptic equations with critical Sobolev growth and hardy potential. Acta Math. Sci. Ser. B (Engl. Ed.) 37 (2017), no. 1, 58–68

Download references

Acknowledgements

I would like to thank my Ph.D. advisor Prof. K. Sandeep for valuable discussions and numerous suggestions on improving the manuscript. Also, I would like to thank the anonymous referee for many useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramya Dutta.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Calculations for the test function in Theorem-1.1:

Note that for the test function \(\displaystyle \varphi = \eta ^p(v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}}v\) with \(\gamma > 0\) we have

$$\begin{aligned} \nabla \varphi&= p\eta ^{p-1}(v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}}v \nabla \eta + \frac{\gamma - 1}{2}\eta ^p(v^2 + \epsilon ^2)^{\frac{\gamma - 3}{2}}2v^2\nabla v + \eta ^p(v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}}\nabla v \end{aligned}$$
(6.1)
$$\begin{aligned}&= p\eta ^{p-1}(v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}}v \nabla \eta + \eta ^p(v^2 + \epsilon ^2)^{\frac{\gamma - 3}{2}}\left[ (\gamma - 1)v^2 + (v^2 + \epsilon ^2)\right] \nabla v \end{aligned}$$
(6.2)
$$\begin{aligned}&= p\eta ^{p-1}(v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}}v \nabla \eta + \eta ^p(v^2 + \epsilon ^2)^{\frac{\gamma - 3}{2}}\left[ \gamma v^2 + \epsilon ^2\right] \nabla v. \end{aligned}$$
(6.3)

Therefore we have

$$\begin{aligned} |\nabla v|^{p-2} \nabla v \cdot \nabla \varphi&= p\eta ^{p-1}|\nabla v|^{p-2}(\nabla v \cdot \nabla \eta ) v (v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}}\nonumber \\&\quad + \eta ^p|\nabla v|^p (v^2 + \epsilon ^2)^{\frac{\gamma - 3}{2}}\left[ \gamma v^2 + \epsilon ^2\right] . \end{aligned}$$
(6.4)

We apply Young’s inequality to the first term in the RHS of the expression (6.4) with indices \(\frac{1}{p'} + \frac{1}{p} = 1\) with an arbitrary \(\delta > 0\),

$$\begin{aligned} p(\eta ^{p-1}|\nabla v|^{p-2}\nabla v) \cdot (v\nabla \eta ) (v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}}&\le \left[ \delta \eta ^p |\nabla v|^p\nonumber \right. \\&\left. \quad + C_p\delta ^{-(p-1)}|\nabla \eta |^p|v|^p\right] (v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}}. \end{aligned}$$
(6.5)

Therefore from (6.4) and (6.5) we have

$$\begin{aligned}&|\nabla v|^{p-2} \nabla v \cdot \nabla \varphi \nonumber \\&\quad \ge \eta ^p|\nabla v|^p (v^2 + \epsilon ^2)^{\frac{\gamma - 3}{2}}\left[ \gamma v^2 + \epsilon ^2\right] - \left[ \delta \eta ^p |\nabla v|^p + C_p\delta ^{-(p-1)}|\nabla \eta |^p|v|^p\right] (v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}} \end{aligned}$$
(6.6)
$$\begin{aligned}&= \eta ^p|\nabla v|^p (v^2 + \epsilon ^2)^{\frac{\gamma - 3}{2}}\left[ \gamma v^2 + \epsilon ^2 - \delta (v^2 + \epsilon ^2)\right] - C_p\delta ^{-(p-1)} |\nabla \eta |^p|v|^p (v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}} \end{aligned}$$
(6.7)
$$\begin{aligned}&\ge \frac{1}{2} \eta ^p|\nabla v|^p (v^2 + \epsilon ^2)^{\frac{\gamma - 3}{2}}\left[ \gamma v^2 + \epsilon ^2 \right] - C_\gamma |\nabla \eta |^p|v|^p (v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}} \end{aligned}$$
(6.8)

where, in (6.7) we chose \(\delta = \frac{1}{2}\min (\gamma , 1)\) and \(C_\gamma = C_p \delta ^{-(p-1)}\).

Now, consider the function \(\displaystyle w = (v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2p}}v\) then we note that

$$\begin{aligned} \nabla w&= \frac{\gamma - 1}{p}(v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2p}-1}v^2 \nabla v + (v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2p}} \nabla v\nonumber \\&= (v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2p}-1} \left[ \frac{p + \gamma - 1}{p} v^2 + \epsilon ^2\right] \nabla v. \end{aligned}$$
(6.9)

Then note that

$$\begin{aligned} |\nabla w|^p&= (v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}-p} \left[ \frac{p + \gamma - 1}{p} v^2 + \epsilon ^2\right] ^p |\nabla v|^p \end{aligned}$$
(6.10)
$$\begin{aligned}&\le \max \left( \frac{p + \gamma -1}{p}, 1\right) ^p (v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}} |\nabla v|^p \end{aligned}$$
(6.11)
$$\begin{aligned}&\le \max \left( \frac{p + \gamma -1}{p}, 1\right) ^p (v^2 + \epsilon ^2)^{\frac{\gamma - 3}{2}} \max \left( \frac{1}{\gamma },1\right) (\gamma v^2 + \epsilon ^2) |\nabla v|^p. \end{aligned}$$
(6.12)

Therefore, from (6.10) we have

$$\begin{aligned} c(\gamma )^{-1}\eta ^p|\nabla w|^p&\le \frac{1}{2}(v^2 + \epsilon ^2)^{\frac{\gamma - 3}{2}} \left[ \gamma v^2 + \epsilon ^2\right] \eta ^p |\nabla v|^p \end{aligned}$$
(6.13)

where,

$$\begin{aligned} c(\gamma ) = 2\max \left( \frac{p + \gamma -1}{p}, 1\right) ^p \max \left( \frac{1}{\gamma },1\right) \end{aligned}$$
(6.14)

and combining with (6.8) we get

$$\begin{aligned} |\nabla v|^{p-2} \nabla v \cdot \nabla \varphi&\ge c(\gamma )^{-1}\eta ^p|\nabla w|^p - C_\gamma |\nabla \eta |^p|v|^p (v^2 + \epsilon ^2)^{\frac{\gamma - 1}{2}} \end{aligned}$$
(6.15)
$$\begin{aligned}&\ge \frac{c(\gamma )^{-1}}{2^{p-1}}|\nabla (\eta w)|^p - C_\gamma ' |\nabla \eta |^p|w|^p \end{aligned}$$
(6.16)

where, \(C_\gamma ' = c(\gamma )^{-1} + C_\gamma \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, R. Apriori decay estimates for Hardy–Sobolev–Maz’ya equations. Calc. Var. 61, 14 (2022). https://doi.org/10.1007/s00526-021-02126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02126-y

Mathematics Subject Classification

Navigation