Skip to main content
Log in

The distance function in the presence of an obstacle

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the Riemannian distance function from a fixed point (a point-wise target) of Euclidean space in the presence of a compact obstacle bounded by a smooth hypersurface. First, we show that such a function is locally semiconcave with a fractional modulus of order one half and that, near the obstacle, this regularity is optimal. Then, in the Euclidean setting, we prove that the singularities of the distance function propagate, in the sense that each singular point belongs to a nontrivial singular continuum. Finally, we investigate the lack of differentiability of the distance function when a convex obstacle is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We observe that, by Theorem 1.6, we have that \(\partial {\mathcal {O}}\cap \Sigma (d)\not =\emptyset \).

  2. Hereafter, even at a point \(y\in \partial {\mathcal {O}}\), we have kept the notation Dd(y) to denote the unique element of \(D^*d(y)\) whenever the last set reduces to a singleton.

  3. s is given by (2.28).

  4. We recall that the distance function from a convex set is differentiable in the complement of such a set.

  5. Recall that \(\langle p, \nu (x_0)\rangle \le 0\) for all \(p\in D^*d(x_0)\) (see Remark 2.11).

  6. We recall that a value p is regular for u if for every \(x\in X\) such that \(u(x)=p\) the differential du(x) is surjective between the tangent space to X at x and the tangent space to \(S_\delta \) at u(x). Furthermore, since these tangent spaces have the same dimension, \(n-1\), du(x) is surjective if and only if it is injective.

References

  1. Albano, P.: Some properties of semiconcave functions with general modulus. J. Math. Anal. Appl. 271(1), 217–231 (2002)

    Article  MathSciNet  Google Scholar 

  2. Albano, P.: On the local semiconcavity of the solutions of the eikonal equation. Nonlinear Anal. 73(2), 458–464 (2010)

    Article  MathSciNet  Google Scholar 

  3. Albano, P.: Global propagation of singularities for solutions of Hamilton-Jacobi equations. J. Math. Anal. Appl. 444(2) (2016)

  4. Albano, P., Basco, V., Cannarsa, P.: On the extension problem for semiconcave functions with fractional modulus, preprint arXiv:2009.12627, (2020). To appear in Nonlinear Analysis

  5. Albano, P., Cannarsa, P.: Singularities of semiconcave functions in Banach spaces. Stochastic analysis, control, optimization and applications, 171–190, Systems Control Found. Appl., Birkhäuser Boston, Boston, MA, (1999)

  6. Albano, P., Cannarsa, P.: Structural properties of singularities of semiconcave functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28(4), 719–740 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Albano, P., Cannarsa, P.: Propagation of singularities for solutions of nonlinear first order partial differential equations. Arch. Ration. Mech. Anal. 162(1), 1–23 (2002)

    Article  MathSciNet  Google Scholar 

  8. Albano, P., Cannarsa, P., Nguyen, K.T., Sinestrari, C.: Singular gradient flow of the distance function and homotopy equivalence. Math. Ann. 356(1), 23–43 (2013)

    Article  MathSciNet  Google Scholar 

  9. Alexander, R., Alexander, S.: Geodesics in Riemannian manifolds-with-boundary. Indiana Univ. Math. J. 30(4), 481–488 (1981)

    Article  MathSciNet  Google Scholar 

  10. Aubin, J.P., Cellina, A.: Differential inclusions. Springer, Berlin (1984)

    Book  Google Scholar 

  11. Canino, A.: On p-convex sets and geodesics. J. Differ. Equ. 75(1), 118–157 (1988)

    Article  MathSciNet  Google Scholar 

  12. Cannarsa, P., Cheng, W.: Generalized characteristics and Lax-Oleinik operators: global theory. Calc. Var. Partial Differ. Equ. 56(5), 1–31 (2017)

    Article  MathSciNet  Google Scholar 

  13. Cannarsa, P., Cheng, W., Mendico, C., Wang, K.: Weak KAM approach to first-order mean field games with state constraints, preprint arXiv:2004.06505, (2020)

  14. Cannarsa, P., Peirone, R.: Unbounded components of the singular set of the distance function in \(\mathbb{R}^n\). Trans. Amer. Math. Soc. 353(11), 4567–4581 (2001)

    Article  MathSciNet  Google Scholar 

  15. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Birkhäuser, Boston (2004)

    Book  Google Scholar 

  16. Cannarsa, P., Soner, H.M.: On the singularities of the viscosity solutions to Hamilton-Jacobi-Bellman equations. Indiana Univ. Math. J. 36(3), 501–524 (1987)

    Article  MathSciNet  Google Scholar 

  17. Cannarsa, P., Yu, Y.: Singular dynamics for semiconcave functions. J. Eur. Math. Soc. (JEMS) 11(5), 999–1024 (2009)

    Article  MathSciNet  Google Scholar 

  18. Capuzzo Dolcetta, I., Lions, P.L.: Hamilton-Jacobi equations with state constraints. Trans. Amer. Math. Soc. 318(2), 643–683 (1990)

    Article  MathSciNet  Google Scholar 

  19. Cardaliaguet, P., Marchi, C.: Regularity of the eikonal equation with Neumann boundary conditions in the plane: application to fronts with nonlocal terms. SIAM J. Control Optim. 45(3), 1017–1038 (2006)

    Article  MathSciNet  Google Scholar 

  20. Clarke, F.H.: Optimization and nonsmooth analysis, Classics in applied mathematics 5. SIAM, New Delhi (1990)

    Book  Google Scholar 

  21. Ellis Royal, J.: Regularity of geodesics in sets of positive reach. Houston J. Math. 42(2), 521–535 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian geometry, 3rd edn. Universitext. Springer-Verlag, Berlin (2004)

    Book  Google Scholar 

  23. Guillemin, V., Pollack, R.: Differential topology. Prentice-Hall Inc, Englewood Cliffs, New Jersey (1974)

    MATH  Google Scholar 

  24. Hörmander, L.: Notions of convexity. Progress in Mathematics, 127. Birkhüser Boston, Inc., Boston, MA (1994)

  25. Lions, P.L.: Generalized solutions of Hamilton-Jacobi equations. Research Notes in Mathematics, 69. Pitman, Boston, Mass.-London, (1982)

  26. Marino, A., Scolozzi, D.: Geodesics with obstacles. (Italian) Boll. Un. Mat. Ital. B 2(1), 1–31 (1983)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referee who provided constructive criticism that highly improved the quality of the paper.

Funding

This work was partly supported by the National Group for Mathematical Analysis, Probability and Applications (GNAMPA) of the Italian Istituto Nazionale di Alta Matematica “Francesco Severi”; moreover, the third author acknowledges support by the Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piermarco Cannarsa.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Theorem 1.2

Appendix A. Proof of Theorem 1.2

Let \(K\subset {\mathbb {R}}^n\) be a compact set such that \(k_0\notin K\) and \(K\cap \partial {\mathcal {O}}\not =\emptyset \). For \(x\in K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}\) we define

$$\begin{aligned} E(x)=\inf _\gamma \int _0^1 \langle A(\gamma (t)){\dot{\gamma }}(t),{\dot{\gamma }}(t)\rangle \, dt \end{aligned}$$

where the infimum is taken w.r.t. \(\gamma \in AC([0,1];\overline{{\mathbb {R}}^n\setminus {\mathcal {O}}})\) with \(\gamma (0)=x\) and \(\gamma (1)=k_0\). We recall that

$$\begin{aligned} d(x)=\sqrt{E(x)},\quad x\in K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}} . \end{aligned}$$
(A.59)

Equation (A.59) describes a well-known property whose proof can be found, for instance, in [22, p. 93]. Now, observe that, since \(d>0\) on \(K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}\), we have that \(E>0\) on \(K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}\). Furthermore, in [13, Proposition 3.9], it is shown that \(E\in SC^{\frac{1}{2}}(K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}})\). Then, it suffices to prove that the square root of a positive semiconcave function is semiconcave. For this purpose, first we show that \(\sqrt{E}\) is a Lipschitz function on \(K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}\). Indeed, the existence of a constant L such that

$$\begin{aligned} |E(x)-E(y)|\le L |x-y|,\qquad \forall x,y\in K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}} \end{aligned}$$

implies that, for every \(x,y\in K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}\),

$$\begin{aligned} |\sqrt{E(x)}-\sqrt{E(y)}|\le \frac{L}{\sqrt{E(x)}+\sqrt{E(y)}} |x-y|\le L'|x-y| , \end{aligned}$$

with

$$\begin{aligned} L'=\frac{L}{2\min _{x\in K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}} \sqrt{E(x)}}. \end{aligned}$$

Furthermore, the fact that \(E\in SC^{\frac{1}{2}}(K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}})\) implies that, for every \(x\in K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}\), we have that

$$\begin{aligned} E(y)-E(x)\le \langle p, y-x\rangle +C |y-x|^{3/2} \end{aligned}$$

for every \(y\in K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}\) such that \([x,y]\subset K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}\) and for every \(p\in D^+E(x)\). Then,

$$\begin{aligned}&\sqrt{E(y)}\le \sqrt{E(x)} +\frac{1}{\sqrt{E(x)}+\sqrt{E(y)}} (\langle p, y-x\rangle +C |y-x|^{3/2}) \nonumber \\&\quad \le \sqrt{E(x)} +\frac{1}{2\sqrt{E(x)}} \langle p, y-x\rangle +\left( \frac{1}{\sqrt{E(x)}+\sqrt{E(y)}} - \frac{1}{2\sqrt{E(x)}}\right) \langle p, y-x\rangle \nonumber \\&\qquad +\frac{C}{\sqrt{E(x)}+\sqrt{E(y)}} |y-x|^{3/2} \nonumber \\&\quad \le \sqrt{E(x)} +\frac{1}{2\sqrt{E(x)}} \langle p, y-x\rangle + C' |y-x|^{3/2} \end{aligned}$$
(A.60)

with

$$\begin{aligned} C'=\max _{x,y\in K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}} \left( \frac{C}{\sqrt{E(x)}+\sqrt{E(y)}} + \frac{ L L' \sqrt{|y-x|} }{2\sqrt{E(x)} [ \sqrt{E(x)}+\sqrt{E(y)}]} \right) , \end{aligned}$$

i.e. for every \(x,y\in K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}\) such that \([x,y]\subset K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}\) and for every \(p\in D^+E(x)\)

$$\begin{aligned} \sqrt{E(y)}\le \sqrt{E(x)} +\frac{1}{2\sqrt{E(x)}} \langle p, y-x\rangle + C' |y-x|^{3/2}. \end{aligned}$$
(A.61)

Now, let \(x,y\in K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}\) such that \([x,y]\subset K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}}\) and let \(\lambda \in [0,1]\). Then, by (A.61), with x replaced with \(\lambda x+(1-\lambda )y\), we find

$$\begin{aligned} \sqrt{E(y)}\le & {} \sqrt{E(\lambda x+(1-\lambda )y )} \nonumber \\&+\frac{1}{2\sqrt{E(\lambda x+(1-\lambda )y)}}\lambda \langle p, x-y\rangle + C'\lambda ^{3/2} |y-x|^{3/2}, \end{aligned}$$
(A.62)

with \(p\in D^+d( \lambda x+(1-\lambda )y)\). Analogoulsy, we find that

$$\begin{aligned} \sqrt{E(x)}\le & {} \sqrt{E(\lambda x+(1-\lambda )y )} \nonumber \\&+\frac{1}{2\sqrt{E(\lambda x+(1-\lambda )y)}}(1-\lambda ) \langle p, y-x\rangle + C'(1-\lambda )^{3/2} |y-x|^{3/2}.\nonumber \\ \end{aligned}$$
(A.63)

Taking the convex combination of (A.62) with (A.63), we find that

$$\begin{aligned}&\lambda \sqrt{E(x)}+(1-\lambda ) \sqrt{E(y)}- \sqrt{E(\lambda x+(1-\lambda )y )} \\&\quad \le C' ((1-\lambda ) \lambda ^{3/2}+\lambda (1-\lambda )^{3/2}) |y-x|^{3/2}\le C' (1-\lambda ) \lambda |y-x|^{3/2}. \end{aligned}$$

This completes our proof.

Remark A.12

The above proof is based on the property that the square root of the positive function \(E\in SC^{\frac{1}{2}}(K\cap \overline{{\mathbb {R}}^n\setminus {\mathcal {O}}})\) is itself fractionally semiconcave of order 1/2. We note that, here, known results dealing with the semiconcavity of a composition (see, e.g., [15, Proposition 2.1.12 (i)]) cannot be applied for two reasons. First, they do not address semiconcave functions on a closed domain and, second, they do not provide a control of the fractional semiconcavity modulus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albano, P., Basco, V. & Cannarsa, P. The distance function in the presence of an obstacle. Calc. Var. 61, 13 (2022). https://doi.org/10.1007/s00526-021-02125-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02125-z

Mathematics Subject Classification

Navigation