Skip to main content
Log in

Higher regularity and uniqueness for inner variational equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study local minima of the p-conformal energy functionals,

$$\begin{aligned} {\mathsf {E}}_{{{\mathcal {A}}}}^*(h){:}{=}\int _{\mathbb D}{{{\mathcal {A}}}}({\mathbb K}(w,h)) \;J(w,h) \; dw,\quad h|_{\mathbb S}=h_0|_{\mathbb S}, \end{aligned}$$

defined for self mappings \(h:{\mathbb D}\rightarrow {\mathbb D}\) with finite distortion of the unit disk with prescribed boundary values \(h_0\). Here \({\mathbb K}(w,h) = \frac{\Vert Dh(w)\Vert ^2}{J(w,h)} \) is the pointwise distortion functional, and \({{{\mathcal {A}}}}:[1,\infty )\rightarrow [1,\infty )\) is convex and increasing with \({{{\mathcal {A}}}}(t)\approx t^p\) for some \(p\ge 1\), with additional minor technical conditions. Note \({{{\mathcal {A}}}}(t)=t\) is the Dirichlet energy functional. Critical points of \({\mathsf {E}}_{{{\mathcal {A}}}}^*\) satisfy the Ahlfors-Hopf inner-variational equation

$$\begin{aligned} {{{\mathcal {A}}}}'({\mathbb K}(w,h)) h_w \overline{h_{{\overline{w}}}} = \Phi \end{aligned}$$

where \(\Phi \) is a holomorphic function. Iwaniec, Kovalev and Onninen established the Lipschitz regularity of critical points. Here we give a sufficient condition to ensure that a local minimum is a diffeomorphic solution to this equation, and that it is unique. This condition is necessarily satisfied by any locally quasiconformal critical point, and is basically the assumption \({\mathbb K}(w,h)\in L^1({\mathbb D})\cap L^r_{loc}({\mathbb D})\) for some \(r>1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahlfors, L.V.: On quasiconformal mappings. J. Anal. Math. 3, 1–58 ((1953/54))

  2. Astala, K., Iwaniec, T., Martin, G.J.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mathematical Series, 48. Princeton University Press, Princeton, NJ (2009)

    MATH  Google Scholar 

  3. Astala, K., Iwaniec, T., Martin, G.J., Onninen, J.: Extremal mappings of finite distortion. Proc. London Math. Soc. 91, 655–702 (2005)

    Article  MathSciNet  Google Scholar 

  4. Gauld, D.B., Vamanamurthy, M.K.: A special case of Schönflies‘ theorem for quasiconformal mappings in \(n\)-space. Ann. Acad. Sci. Fenn. Ser. A I Math. 3, 311–316 (1977)

    Article  MathSciNet  Google Scholar 

  5. Gehring, F.W., Martin, G.J., Palka, B.P.: An introduction to the theory of higher-dimensional quasiconformal mappings. Am. Math. Soc (2017)

  6. Gol‘dshtein, V.M., Vodop‘yanov, S.K.: Quasiconformal mappings and spaces of functions with generalised first derivatives. Sibirsk Mat. Zh. 17, 515–531 (1976)

    Google Scholar 

  7. Hajlasz, P.: Change of variables formula under minimal assumptions. Colloq. Math. 64, 93–101 (1993)

    Article  MathSciNet  Google Scholar 

  8. Hencl, S., Koskela, P.: Regularity of the inverse of a planar Sobolev homeomorphism. Arch. Ration. Mech. Anal. 180, 75–95 (2006)

    Article  MathSciNet  Google Scholar 

  9. Hencl, S., Koskela, P.: Lectures on Mappings of Finite Distortion. Lecture Notes in Mathematics, vol. 2096. Springer, Cham (2014)

    Book  Google Scholar 

  10. Iwaniec, T., Kovalev, L.V., Onninen, J.: Lipschitz regularity for inner variational equations. Duke Math. J. 162, 643–672 (2013)

    Article  MathSciNet  Google Scholar 

  11. Iwaniec, T., Martin, G.J., Onninen, J.: On minimisers of \(L^p\)-mean distortion. Comput. Methods Funct. Theory 14, 399–416 (2014)

    Article  MathSciNet  Google Scholar 

  12. Martin, G.J., McKubre-Jordens, M.: Minimizers of mean distortion and the Grötzsch problem. J. London Math. Soc. 85, 282–300 (2012)

    Article  MathSciNet  Google Scholar 

  13. Martin, G.J., and Yao, C.: The \(L^p\) Teichmüller theory: Existence and regularity of critical points, to appear

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaven Martin.

Additional information

Communicated by L. Szekelyhid.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research of both authors is supported in part by a grant from the NZ Marsden Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, G., Yao, C. Higher regularity and uniqueness for inner variational equations. Calc. Var. 61, 20 (2022). https://doi.org/10.1007/s00526-021-02121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02121-3

Mathematics Subject Classification

Navigation