Skip to main content
Log in

A strictly convex Sobolev function with null Hessian minors

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Given \(1\le p<k\le n\), we construct a strictly convex function \(f\in W^{2,p}((0,1)^n)\) with \(\alpha \)-Hölder continuous derivative for any \(0<\alpha <1\) such that \({\text {rank}}\nabla ^2 f < k\) almost everywhere in \((0,1)^n\). In particular, the mapping \(F=\nabla f\) is an example of a \(W^{1,p}\) homeomorphism whose differential has rank strictly less than k almost everywhere in the unit cube. This Sobolev regularity is sharp in the sense that if \(g\in W^{2,p}\), \(p\ge k\), and \({\text {rank}}\nabla ^2 g < k\) a.e., then g cannot be strictly convex on any open portion of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Ambrosio, L.: A geometrical approach to monotone functions in \({ R}^n\). Math. Z. 230(2), 259–316 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aleksandrov, A.D.: Dirichlet’s problem for the equation \({\rm Det}\,\vert \vert z_{ij}\vert \vert =\varphi (z_{1},\cdots,z_{n},z, x_{1},\cdots, x_{n}).\) I. Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr. 13(1), 5–24 (1958)

    MathSciNet  Google Scholar 

  3. Bakelman, I.J.: Convex analysis and nonlinear geometric elliptic equations. In: Steven, D.T. (eds.) With an obituary for the author by William Rundell, Springer, Berlin (1994)

  4. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63(4), 337–403 (1976/1977)

  5. Ball, J.M., Currie, J.C., Olver, P.J.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41(2), 135–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borisov, J.F.: \(C^{1,\,\alpha }\)-isometric immersions of Riemannian spaces. Dokl. Akad. Nauk SSSR 163, 11–13 (1965)

    MathSciNet  Google Scholar 

  7. Borisov, Y.F.: Irregular surfaces of the class \({C}^{1,\beta }\) with an analytic metric. Sibirsk. Mat. Zh. 45(1), 25–61 (2004). doi:10.1023/B:SIMJ.0000013011.51242.23

    MathSciNet  MATH  Google Scholar 

  8. Brezis, H., Nguyen, H.M.: The Jacobian determinant revisited. Invent. Math. 185(1), 17–54 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Černý, R.: Bi-Sobolev homeomorphism with zero minors almost everywhere. Adv. Calc. Var. (2013). doi:10.1515/acv-2013-0011

    MATH  Google Scholar 

  10. Colesanti, A., Hug, D.: Hessian measures of convex functions and applications to area measures. J. Lond. Math. Soc. (2) 71(1), 221–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Conti, S., De Lellis, C., Székelyhidi Jr., L.: \(h\)-principle and rigidity for \({C}^{1,\alpha }\) isometric embeddings. In: Nonlinear Partial Differential Equations, Abel Symposia, vol. 7, pp. 83–116. Springer, New York (2010)

  12. De Lellis, C., Inauen, D., Székelyhidi Jr., L.: A Nash–Kuiper theorem for \({C}^{1,1/5-\delta }\) immersions of surfaces in 3 dimensions (2015). arXiv:1510.01934 [math.DG]

  13. Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78. Springer, Berlin (1989)

    MATH  Google Scholar 

  14. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)

    MATH  Google Scholar 

  15. Faraco, D., Mora-Corral, C., Oliva, M.: Sobolev homeomorphisms with gradients of low rank via laminates (2016). arXiv:1603.04047 [math.CA]

  16. Fonseca, I., Malý, J.: From Jacobian to Hessian: distributional form and relaxation. Riv. Mat. Univ. Parma (7) 4*, 45–74 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Fu, J.H.G.: Monge–Ampère functions. I, II. Indiana Univ. Math. J. 38(3), 745–771 (1989). 773–789

    Article  MathSciNet  MATH  Google Scholar 

  18. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies, vol. 105. Princeton University Press, Princeton, NJ (1983)

    MATH  Google Scholar 

  19. Hartman, P., Nirenberg, L.: On spherical image maps whose Jacobians do not change sign. Am. J. Math. 81, 901–920 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hencl, S.: Sobolev homeomorphism with zero Jacobian almost everywhere. J. Math. Pure Appl. (9) 95(4), 444–458 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Iwaniec, T.: On the concept of the weak Jacobian and Hessian. In: Heinonen, J., Kilpeläinen, T., Koskela. P., (eds.) Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, pp. 181–205. Univ. Jyväskylä, Jyväskylä (2001)

  22. Iwaniec, T., Martin, G.: Quasiregular mappings in even dimensions. Acta Math. 170(1), 29–81 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jerrard, R.L.: Some rigidity results related to Monge–Ampère functions. Can. J. Math. 62(2), 320–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jerrard, R.L., Pakzad, M.R.: Sobolev spaces of isometric immersions of arbitrary dimension and codimension (2014). arXiv:1405.4765 [math.AP]

  25. Kirchheim, B.: Geometry and Rigidity of Microstructures. Habilitation Thesis, Leipzig (2001)

  26. Kuiper, N.H.: On \(C^1\)-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17, 545–556, 683–689 (1955)

  27. Liu, Z., Malý, J.: A note on Sobolev isometric immersion below \({W}^{2,2}\) regularity . http://www.karlin.mff.cuni.cz/kma-preprints/ (2016)

  28. Liu, Z., Malý, J., Pakzad, M.R.: \({C}^{1,\alpha }\) approximation by mappings with singular hessian minors. In preparation

  29. Liu, Z., Pakzad, M.R.: Rigidity and regularity of co-dimension one Sobolev isometric immersions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) (2013). doi: 10.2422/2036-2145.201302_001

  30. Malý, J.: Examples of weak minimizers with continuous singularities. Expos. Math. 13(5), 446–454 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Müller, S.: On the singular support of the distributional determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire 10(6), 657–696 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Nash, J.: \(C^1\) isometric imbeddings. Ann. Math. 2(60), 383–396 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47–69 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Pogorelov, A.V.: Surfaces of bounded extrinsic curvature (Russian). Izdat. Har’kov. Gos. Univ, Kharkov (1956)

    Google Scholar 

  35. Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. Translations of Mathematical Monographs, vol. 35. American Mathematical Society, Providence, R.I. (1973)

    MATH  Google Scholar 

  36. Ponomarëv, S.P.: On the \(N\)-property of homeomorphisms of the class \(W^1_p\). Sibirsk. Mat. Zh. 28(2), 140–148, 226 (1987)

    MathSciNet  MATH  Google Scholar 

  37. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. I–V, 2nd edn. Publish or Perish, Inc., Wilmington (1979)

  38. Trudinger, N.S., Wang, X.J.: Hessian measures I. Dedicated to Olga Ladyzhenskaya. Topol. Methods Nonlinear Anal. 10(2), 225–239 (1997)

    MathSciNet  Google Scholar 

  39. Ziemer, W.P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Robert Jerrard and Reza Pakzad for many useful discussions, and Camillo De Lellis for an advice how to refine citations in the bibliography about the isometric embedding. Also, we thank the anonymous referee for careful readings and comments how to improve the statements of the results. These comments are reflected in Remarks 3 and 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Malý.

Additional information

Communicated by C. De Lellis.

Z. Liu was supported by the ERC CZ Grant LL1203 of the Czech Ministry of Education. J. Malý is supported by the Grant GA ČR P201/15-08218S of the Czech Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Malý, J. A strictly convex Sobolev function with null Hessian minors. Calc. Var. 55, 58 (2016). https://doi.org/10.1007/s00526-016-0994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-0994-7

Mathematics Subject Classification

Navigation