Lemma 2.1
Let \(f_1,f_2\in {{\mathcal {C}}}({\mathbb {R}}^K)\) and assume there exists \(C>0\) such that \(|f_1(u)|+|f_2(u)|\le C(|u|^2+|u|^{2^*})\) for every \(u\in {\mathbb {R}}^K\). Then \(f_1\preceq f_2\) if and only if \(f_1\le f_2\) and
$$\begin{aligned} \int _{{\mathbb {R}}^N}f_1(u)-f_2(u)\,dx<0 \end{aligned}$$
for every \(u\in H^1({\mathbb {R}}^N)^K\setminus \{0\}\).
Proof
We argue similarly as in the case \(K=1\) provided in [11, Lemma 2.1]. \(\square \)
We will always assume that (A0) holds. Lemmas 2.2–2.5 are variants of the results contained in [11, 23] with some improvements and adapted to the system of equations.
Lemma 2.2
If (A1)–(A3), (A5), and (1.8) hold, then \(\inf \{|\nabla u|_2^2:u\in {\mathcal {M}}\cap {\mathcal {D}}\}>0\).
Proof
Recall that, if \(p\in [2,2^*]\), then
$$\begin{aligned} \big ||u|\big |_p=|u|_p \text { and } \big |\nabla |u|\big |_2\le |\nabla u|_2 \text { for every }u\in H^1({\mathbb {R}}^N)^K. \end{aligned}$$
For every \(\varepsilon >0\) there exists \(c_\varepsilon >0\) such that for every \(u\in {{\mathcal {M}}}\cap {{\mathcal {D}}}\)
$$\begin{aligned}\begin{aligned} |\nabla u|_2^2&=\frac{N}{2}\int _{{\mathbb {R}}^N}H(u)\,dx\le 2^*\bigl (c_\varepsilon |u|_{2^*}^{2^*}+(\varepsilon +\eta )|u|_{2_N}^{2_N}\bigr )=2^*\bigl (c_\varepsilon \big ||u|\big |_{2^*}^{2^*}+(\varepsilon +\eta )\big ||u|\big |_{2_N}^{2_N}\bigr )\\&\le 2^*\Bigl (c_\varepsilon C_{N,2^*}^{2^*}\big |\nabla |u|\big |_2^{2^*}+(\varepsilon +\eta )C_{N,2_N}^{2_N}|\rho |^{4/N}\big |\nabla |u|\big |_2^2\Bigr )\\&\le 2^*\bigl (c_\varepsilon C_{N,2^*}^{2^*}|\nabla u|_2^{2^*}+(\varepsilon +\eta )C_{N,2_N}^{2_N}|\rho |^{4/N}|\nabla u|_2^2\bigr ) \end{aligned}\end{aligned}$$
i.e.,
$$\begin{aligned} 0\le 2^*c_\varepsilon C_{N,2^*}^{2^*}|\nabla u|_2^{2^*}+\bigl (2^*(\varepsilon +\eta )C_{N,2_N}^{2_N}|\rho |^{4/N}-1\bigr )|\nabla u|_2^2 \end{aligned}$$
(2.1)
Taking \(\varepsilon \) sufficiently small so that
$$\begin{aligned} 2^*(\varepsilon +\eta )C_{N,2_N}^{2_N}|\rho |^{4/N}<1 \end{aligned}$$
we conclude. \(\square \)
For \(u\in H^1({\mathbb {R}}^N)^K\setminus \{0\}\) and \(s>0\) define \(s\star u(x):=s^{N/2}u(sx)\) and \(\varphi (s):=J(s\star u)\).
Lemma 2.3
Assume that (A1)–(A5) hold and let \(u\in H^1({\mathbb {R}}^N)^K\setminus \{0\}\) such that
$$\begin{aligned} \eta <\frac{|\nabla u|_2^2}{2|u|_{2_N}^{2_N}}. \end{aligned}$$
(2.2)
Then there exist \(a=a(u)>0\) and \(b=b(u)\ge a\) such that each \(s\in [a,b]\) is a global maximizer for \(\varphi \) and \(\varphi \) is increasing on (0, a) and decreasing on \((b,\infty )\). Moreover, \(s\star u\in {{\mathcal {M}}}\) if and only if \(s\in [a,b]\), \(M(s\star u)>0\) if and only if \(s\in (0,a)\), and \(M(s\star u)<0\) if and only if \(s>b\). If (A4,\(\preceq \)) holds, then \(a=b\).
Note that (1.8) implies (2.2) provided that \(u\in {{\mathcal {D}}}\). Indeed, from (1.7)
$$\begin{aligned} 2\eta |u|_{2_N}^{2_N}\le 2\eta C_{N,2_N}^{2_N} |\nabla u|_2^{2} |u|_2^{4/N}\le 2\eta C_{N,2_N}^{2_N} |\nabla u|_2^{2} |\rho |^{4/N}<|\nabla u|_2^{2}. \end{aligned}$$
Proof
Notice that from (A1)
$$\begin{aligned} \varphi (s)=\int _{{\mathbb {R}}^N}\frac{s^2}{2}|\nabla u|^2-\frac{G(s^{N/2}u)}{s^N}\,dx\rightarrow 0 \end{aligned}$$
as \(s\rightarrow 0^+\) and from (A2) \(\lim _{s\rightarrow \infty }\varphi (s)=-\infty \). From (A1) and (A3) for every \(\varepsilon >0\) there exists \(c_\varepsilon >0\) such that
$$\begin{aligned} G(u)\le (\varepsilon +\eta )|u|^{2_N}+c_\varepsilon |u|^{2^*}, \end{aligned}$$
therefore,
$$\begin{aligned} \varphi (s)\ge s^2\Big (\int _{{\mathbb {R}}^N}\frac{1}{2}|\nabla u|^2-(\eta +\varepsilon )|u|^{2_N}\,dx\Big )-c_\varepsilon s^{2^*}\int _{{\mathbb {R}}^N}|u|^{2^*}\,dx>0 \end{aligned}$$
for sufficiently small \(\varepsilon \) and s. It follows that there exists an interval \([a,b]\subset (0,\infty )\) such that \(\varphi |_{[a,b]}=\max \varphi \). Moreover
$$\begin{aligned} \varphi '(s)=s\int _{{\mathbb {R}}^N}|\nabla u|^2-\frac{N}{2}\frac{H(s^{N/2}u)}{s^{N+2}}\,dx \end{aligned}$$
and the function
$$\begin{aligned} s\in (0,\infty )\mapsto \int _{{\mathbb {R}}^N}\frac{H(s^{N/2}u)}{s^{N+2}}\,dx \end{aligned}$$
is nondecreasing (resp. increasing) due to (A4) (resp. (A4,\(\preceq \)) and Lemma 2.1) and tends to \(\infty \) as \(s\rightarrow \infty \) due to (A2) and (A5). There follows that \(\varphi '(s)>0\) if \(s\in (0,a)\) and \(\varphi '(s)<0\) if \(s>b\) and that \(a=b\) if (A4,\(\preceq \)) holds. Finally, observe that
$$\begin{aligned} s\varphi '(s)=\int _{{\mathbb {R}}^N}s^2|\nabla u|^2-\frac{N}{2}\frac{H(s^{N/2}u)}{s^N}\,dx=M(s\star u). \end{aligned}$$
\(\square \square \)
Lemma 2.4
If (A1)–(A5) and (1.8) are verified, then J is coercive on \({{\mathcal {M}}}\cap {{\mathcal {D}}}\).
Proof
First of all note that, if \(u\in {{\mathcal {M}}}\), then due to (A5)
$$\begin{aligned} J(u)=J(u)-\frac{1}{2}M(u)=\int _{{\mathbb {R}}^N}\frac{N}{4}H(u)-G(u)\,dx\ge 0 \end{aligned}$$
and so, a fortiori, J is nonnegative on \({{\mathcal {M}}}\cap {{\mathcal {D}}}\). Let \((u^{(n)})\subset {{\mathcal {M}}}\cap {{\mathcal {D}}}\) such that \(\Vert u^{(n)}\Vert \rightarrow \infty \), i.e., \(\lim _n|\nabla u^{(n)}|_2=\infty \), and define
$$\begin{aligned} s_n:=|\nabla u^{(n)}|_2^{-1}>0\quad \text {and}\quad w^{(n)}:=s_n\star u^{(n)}. \end{aligned}$$
Note that \(s_n\rightarrow 0\), \(|w^{(n)}_i|_2=|u^{(n)}_i|_2\le \rho _i\) for \(i\in \{1,\dots ,K\}\), and \(|\nabla w^{(n)}|_2^2=1\), in particular \((w^{(n)})\) is bounded in \(H^1({\mathbb {R}}^N)^K\). Suppose by contradiction that
$$\begin{aligned} \limsup _n\max _{y\in {\mathbb {R}}^N}\int _{B(y,1)}|w^{(n)}|^2\,dx>0. \end{aligned}$$
Then there exist \((y^{(n)})\subset {\mathbb {R}}^N\) and \(w\in H^1({\mathbb {R}}^N)^K\) such that, up to a subsequence, \(w^{(n)}(\cdot +y^{(n)})\rightharpoonup w\ne 0\) in \(H^1({\mathbb {R}}^N)^K\) and \(w^{(n)}(\cdot +y^{(n)})\rightarrow w\) a.e. in \({\mathbb {R}}^N\). Thus, owing to (A2),
$$\begin{aligned}\begin{aligned} 0&\le \frac{J(u^{(n)})}{|\nabla u^{(n)}|_2^2}\le \frac{1}{2}-\int _{{\mathbb {R}}^N}\frac{G(u^{(n)})}{|\nabla u^{(n)}|_2^2}\,dx=\frac{1}{2}-s_n^{N+2}\int _{{\mathbb {R}}^N}G\bigl (u^{(n)}(s_nx)\bigr )\,dx\\&=\frac{1}{2}-s_n^{N+2}\int _{{\mathbb {R}}^N}G(s_n^{-N/2}w^{(n)})=\frac{1}{2}-\int _{{\mathbb {R}}^N}\frac{G(s_n^{-N/2}w^{(n)})}{|s_n^{-N/2}w^{(n)}|^{2_N}}|w^{(n)}|^{2_N}\,dx\\&=\frac{1}{2}-\int _{{\mathbb {R}}^N}\frac{G\bigl (s_n^{-N/2}w^{(n)}(x+y^{(n)})\bigr )}{|s_n^{-N/2}w^{(n)}(x+y^{(n)})|^{2_N}}|w^{(n)}(x+y^{(n)})|^{2_N}\,dx\rightarrow -\infty . \end{aligned}\end{aligned}$$
It follows that
$$\begin{aligned} \lim _n\max _{y\in {\mathbb {R}}^N}\int _{B(y,1)}|w^{(n)}|^2\,dx=0 \end{aligned}$$
and so, from Lions’ Lemma [28], \(w^{(n)}\rightarrow 0\) in \(L^{2_N}({\mathbb {R}}^N)^K\). Since
$$\begin{aligned} s_n^{-1}\star w^{(n)}=u^{(n)}\in {{\mathcal {M}}}, \end{aligned}$$
Lemma 2.3 yields
$$\begin{aligned} J(u^{(n)})=J(s_n^{-1}\star w^{(n)})\ge J(s\star w^{(n)})=\frac{s^2}{2}-s^N\int _{{\mathbb {R}}^N}G\bigl (s^{N/2}w^{(n)}(s\cdot )\bigr )\,dx \end{aligned}$$
for every \(s>0\). Taking into account that
$$\begin{aligned} \lim _n\int _{{\mathbb {R}}^N}G\bigl (s^{N/2}w^{(n)}(s\cdot )\bigr )\,dx=0, \end{aligned}$$
we have that \(\liminf _nJ(u^{(n)})\ge s^2/2\) for every \(s>0\), i.e., \(\lim _nJ(u^{(n)})=\infty \). \(\square \)
Lemma 2.5
If (A1)–(A5) and (1.8) are verified, then \(c:=\inf _{{{\mathcal {M}}}\cap {{\mathcal {D}}}}J>0\).
Proof
We prove that there exists \(\alpha >0\) such that
$$\begin{aligned} |\nabla u|_2\le \alpha \Rightarrow J(u)\ge \frac{|\nabla u|_2^2}{2N}. \end{aligned}$$
(2.3)
From (1.7) and (1.8), for every \(\varepsilon >0\) there exists \(c_\varepsilon >0\) such that
$$\begin{aligned}\begin{aligned} \int _{{\mathbb {R}}^N}G(u)\,dx&\le c_\varepsilon C_{N,2^*}^{2^*}|\nabla u|_2^{2^*}+(\varepsilon +\eta )C_{N,2_N}^{2_N}|\rho |^{4/N}|\nabla u|_2^2\\&\le \left( c_\varepsilon C_{N,2^*}^{2^*}|\nabla u|_2^{2^*-2}+\varepsilon C_{N,2_N}^{2_N}|\rho |^{4/N}+\frac{1}{2}-\frac{1}{N}\right) |\nabla u|_2^2. \end{aligned}\end{aligned}$$
Choosing
$$\begin{aligned} \varepsilon =\frac{1}{4NC_{N,2_N}^{2_N}|\rho |^{4/N}} \quad \text {and} \quad \alpha =\frac{1}{(4Nc_\varepsilon C_{N,2^*}^{2^*})^\frac{1}{2^*-2}} \end{aligned}$$
we obtain, provided \(|\nabla u|_2\le \alpha \),
$$\begin{aligned} \int _{{\mathbb {R}}^N}G(u)\,dx\le \left( \frac{1}{2}-\frac{1}{2N}\right) |\nabla u|_2^2 \end{aligned}$$
and so \(\displaystyle J(u)\ge \frac{|\nabla u|_2^2}{2N}\). Now take \(u\in {{\mathcal {M}}}\cap {{\mathcal {D}}}\) and \(\alpha >0\) such that (2.3) holds and define
$$\begin{aligned} s:=\frac{\alpha }{|\nabla u|_2}\quad \text {and}\quad w:=s\star u. \end{aligned}$$
Clearly \(|w_i|_2=|u_i|_2\le \rho _i\) for \(i\in \{1,\dots ,K\}\) and \(|\nabla w|_2=\alpha \), whence in view of Lemma 2.3
$$\begin{aligned} J(u)\ge J(w)\ge \frac{|\nabla w|_2^2}{2N}=\frac{\alpha ^2}{2N}>0. \end{aligned}$$
\(\square \square \)
From now on, \(c>0\) will stand for the infimum of J over \({{\mathcal {M}}}\cap {{\mathcal {D}}}\).
Proposition 2.6
Assume that \(\theta \in (0,\infty )^K\) and that (A1)–(A5), (1.8), and (at least) one of the following conditions hold:
-
(i)
\(N\ge 5\);
-
(ii)
there exist \(2_N\le p\le 2^*\) and \(2_N\le q<2^*\) such that
$$\begin{aligned} \liminf _{|u|\rightarrow 0}\frac{\widetilde{G}(u)}{|u|^p}>0 \quad \text {and} \quad \liminf _{|u|\rightarrow \infty }\frac{\widetilde{G}(u)}{|u|^q}>0 \end{aligned}$$
(2.4)
and \(\max \{p,q\}/2-\min \{p,q\}<-1\) if \(N=3\).
Then (1.9) holds.
Recall that, from (A2), the second condition in (2.4) always holds with \(q=2_N\). Notice that the restriction on the relation between p, q is always satisfied if \(p=q\).
Proof
Define \(u_0^1\) as the Aubin–Talenti instanton [4, 40]
$$\begin{aligned} u_0^1(x):=\left( \frac{\sqrt{N(N-2)}}{1+|x|^2}\right) ^\frac{N-2}{2} \end{aligned}$$
and, for \(\varepsilon >0\),
$$\begin{aligned} u_0^\varepsilon (x):=\varepsilon ^{1-N/2}u_0^1(x/\varepsilon )=\left( \frac{\varepsilon \sqrt{N(N-2)}}{\varepsilon ^2+|x|^2}\right) ^\frac{N-2}{2}. \end{aligned}$$
Recall that, for every \(\varepsilon >0\), \(|\nabla u_0^\varepsilon |_2=|\nabla u_0^1|_2\), \(|u_0^\varepsilon |_{2^*}=|u_0^1|_{2^*}\), and \(u_0^\varepsilon \) is a minimizer for
$$\begin{aligned} S:=\inf \left\{ \int _{{\mathbb {R}}^N}|\nabla v|^2\,dx:v\in {{\mathcal {D}}}^{1,2}({\mathbb {R}}^N),\int _{{\mathbb {R}}^N}|v|^{2^*}\,dx=1\right\} . \end{aligned}$$
(i) For every \(\varepsilon >0\) and \(j\in \{1,\dots ,K\}\) define \({\bar{u}}_j^\varepsilon :=\theta _j^{(2-N)/4}u_0^\varepsilon \). Since \(u_0^\varepsilon \in L^2({\mathbb {R}}^N)\) for every \(\varepsilon >0\) and \(|u_0^\varepsilon |_2\rightarrow 0\) as \(\varepsilon \rightarrow 0^+\), we have \({\bar{u}}^\varepsilon :=({\bar{u}}^\varepsilon _1,\ldots ,{\bar{u}}^\varepsilon _K)\in {{\mathcal {D}}}\) for sufficiently small \(\varepsilon \). Moreover, in view of Lemma B.1, \({\bar{u}}^\varepsilon \) is such that
$$\begin{aligned} \frac{|\nabla {\bar{u}}^\varepsilon |_2^2}{\left( \sum _{j=1}^K\theta _j|{\bar{u}}_j^\varepsilon |_{2^*}^{2^*}\right) ^{2/2^*}}=\inf _{u\in {{\mathcal {D}}}^{1,2}({\mathbb {R}}^N)^K\setminus \{0\}}\frac{|\nabla u|_2^2}{\left( \sum _{j=1}^K\theta _j|u_j|_{2^*}^{2^*}\right) ^{2/2^*}}=\left( \sum _{j=1}^K\theta _j^{1-N/2}\right) ^{2/N}S. \end{aligned}$$
Recall that \(\widetilde{G}(u)>0\) for \(u\ne 0\) and then, taking \(\varepsilon \) sufficiently small,
$$\begin{aligned}\begin{aligned} c\le J(s_\varepsilon \star {\bar{u}}^\varepsilon )&\le -\int _{{\mathbb {R}}^N} \widetilde{G}(s_\varepsilon \star {\bar{u}}^\varepsilon ) \,dx+ \max _{s>0}\frac{s^2}{2}\int _{{\mathbb {R}}^N}|\nabla {\bar{u}}^\varepsilon |^2\,dx-\frac{s^{2^*}}{2^*} \sum _{j=1}^K\theta _j\int _{{\mathbb {R}}^N}|{\bar{u}}_j^\varepsilon |^{2^*}\,dx\\&<\max _{s>0}\frac{s^2}{2}\int _{{\mathbb {R}}^N}|\nabla {\bar{u}}^\varepsilon |^2\,dx-\frac{s^{2^*}}{2^*} \sum _{j=1}^K\theta _j\int _{{\mathbb {R}}^N}|{\bar{u}}_j^\varepsilon |^{2^*}\,dx\\&=\frac{1}{N}\frac{|\nabla {\bar{u}}^\varepsilon |_2^N}{\left( \sum _{j=1}^K\theta _j|{\bar{u}}_j^\varepsilon |_{2^*}^{2^*}\right) ^{N/2-1}}=\sum _{j=1}^K\theta _j^{1-N/2}\frac{S^{N/2}}{N}. \end{aligned}\end{aligned}$$
(ii) If \(N\ge 5\), then the statement follows form (i), therefore we can assume \(N\in \{3,4\}\). Since \(u_0^1\not \in L^2({\mathbb {R}}^N)\), let \(0\le \phi \in {{\mathcal {C}}}_0^\infty ({\mathbb {R}}^N)\) radial such that \(\phi \equiv 1\) in \(B_1\) and \(\phi \equiv 0\) in \({\mathbb {R}}^N\setminus B_2\), where \(B_r\) stands for the closed ball centred at 0 of radius r. For every \(\varepsilon >0\) define
$$\begin{aligned} u_j^\varepsilon :=\theta _j^\frac{2-N}{4}\phi u_0^\varepsilon \quad \text {and} \quad v^\varepsilon :=\frac{{\bar{\rho }}}{|u^\varepsilon |_2}(u_1^\varepsilon ,\dots ,u_K^\varepsilon )\in {{\mathcal {D}}}, \end{aligned}$$
where \(\bar{\rho }:=\min _{j\in \{1,\dots ,K\}}\rho _j\), and recall (cf., e.g., [38, p. 179], [36, Lemma A.1]) that
$$\begin{aligned}\begin{aligned} |\nabla (\phi u_0^\varepsilon )|_2^2&=S^{N/2}+O(\varepsilon ^{N-2})\\ |\phi u_0^\varepsilon |_{2^*}^2&= {\left\{ \begin{array}{ll} S+O(\varepsilon ^4) \quad \text {if } N=4\\ S^{1/2}+O(\varepsilon ^2) \quad \text {if } N=3 \end{array}\right. }\\ |\phi u_0^\varepsilon |_2^2&= {\left\{ \begin{array}{ll} C_4\varepsilon ^2|\ln \varepsilon |+O(\varepsilon ^2) \quad \text {if } N=4\\ C_3\varepsilon +O(\varepsilon ^2) \quad \text {if } N=3, \end{array}\right. } \end{aligned}\end{aligned}$$
where \(C_N>0\) depends only on N and \(\phi \). Note that
$$\begin{aligned} \int _{{\mathbb {R}}^N}|\phi u_0^\varepsilon |^r\chi _{\{\phi u_0^\varepsilon \ge 1\}}\,dx\ge C\varepsilon ^{N-(N/2-1)r} \end{aligned}$$
for some constant \(C>0\) and sufficiently small \(\varepsilon >0\), where \(r\in \{p,q\}\) and \(\chi _A\) stands for the characteristic function of A. Indeed, let \(|x|^2\le \varepsilon \sqrt{N(N-2)}-\varepsilon ^2\). If \(\varepsilon \) is sufficiently small, then \(x\in B_1\) and, consequently, \(\phi (x) u_0^\varepsilon (x)=u_0^\varepsilon (x)\ge 1\), whence
$$\begin{aligned}\begin{aligned} \int _{{\mathbb {R}}^N}|\phi u_0^\varepsilon |^r\chi _{\{\phi u_0^\varepsilon \ge 1\}}\,dx&\ge \int _{\left\{ |x|\le \left( \varepsilon \sqrt{N(N-2)}-\varepsilon ^2\right) ^{1/2}\right\} }|u^\varepsilon _0|^r\,dx\\&=\varepsilon ^{N-(N/2-1)r}\int _{\left\{ |y|\le \left( \sqrt{N(N-2)}/\varepsilon -1\right) ^{1/2}\right\} }|u^1_0|^r\,dy \end{aligned}\end{aligned}$$
and we conclude, since \(u^1_0\in L^r({\mathbb {R}}^N)\). Define \(s_\varepsilon >0\) such that \(s_\varepsilon *v^\varepsilon \in {{\mathcal {M}}}\). In a similar way to the proof of Lemma 2.2, for every \(\delta >0\) there exists \(C_\delta >0\) not depending on \(\varepsilon \) such that
$$\begin{aligned} \frac{1}{2^*}|\nabla v^\varepsilon |_2^2\le & {} (\eta +\delta )|v^\varepsilon |_{2_N}^{2_N}+C_\delta s_\varepsilon ^{2^*-2}\sum _{j=1}^K\theta _j|v_j^\varepsilon |_{2^*}^{2^*}\le (\eta +\delta )C_{N,2_N}^{2_N}|\rho |^{4/N}|\nabla v^\varepsilon |_2^2\\&+\,\,C_\delta s_\varepsilon ^{2^*-2}\sum _{j=1}^K\theta _j|v_j^\varepsilon |_{2^*}^{2^*} \end{aligned}$$
(note that \(u\mapsto \left( \sum _{j=1}^K\theta _j|u_j|_{2^*}^{2^*}\right) ^{1/2^*}\) is an equivalent norm in \(L^{2^*}({\mathbb {R}}^N)^K\)), i.e., taking \(\delta \) sufficiently small and denoting \(m:=\bigl (1/2^*-(\eta +\delta )C_{N,2_N}^{2_N}|\rho |^{4/N}\bigr )/C_\delta >0\),
$$\begin{aligned} s_\varepsilon ^{2^*-2}\ge \frac{m|\nabla v^\varepsilon |_2^2}{\sum _{j=1}^K\theta _j|v_j^\varepsilon |_{2^*}^{2^*}}=m\bar{\rho }^{2-2^*}\frac{|\nabla (\phi u_0^\varepsilon )|_2^2|u^\varepsilon |_2^{2^*-2}}{|\phi u_0^\varepsilon |_{2^*}^{2^*}}. \end{aligned}$$
In a similar way to point (i),
$$\begin{aligned} c\le -\int _{{\mathbb {R}}^N}\widetilde{G}(s_\varepsilon \star v^\varepsilon )\,dx+\frac{1}{N}\frac{|\nabla v^\varepsilon |_2^N}{\left( \sum _{j=1}^K\theta _j|v_j^\varepsilon |_{2^*}^{2^*}\right) ^{N/2-1}}. \end{aligned}$$
There holds
$$\begin{aligned}\begin{aligned} |\nabla v^\varepsilon |_2^2 = \frac{\bar{\rho }^2|\nabla (\phi u_0^\varepsilon )|_2^2\sum _{j=1}^K\theta _j^{1-N/2}}{|u^\varepsilon |_2^2} \quad \text {and} \quad \sum _{j=1}^K\theta _j|v_j^\varepsilon |_{2^*}^{2^*}= \frac{\bar{\rho }^{2^*}|\phi u_0^\varepsilon |_{2^*}^{2^*}\sum _{j=1}^K\theta _j^{1-N/2}}{|u^\varepsilon |_2^{2^*}}, \end{aligned}\end{aligned}$$
thus, denoting \(k=2\) (resp. \(k=4\)) if \(N=3\) (resp. \(N=4\)),
$$\begin{aligned} \begin{aligned} \frac{|\nabla v^\varepsilon |_2^N}{\left( \sum _{j=1}^K\theta _j|v_j^\varepsilon |_{2^*}^{2^*}\right) ^{N/2-1}}&=\sum _{j=1}^K\theta _j^{1-N/2}\left( \frac{|\nabla (\phi u_0^\varepsilon )|_2}{|\phi u_0^\varepsilon |_{2^*}}\right) ^N\\&=\sum _{j=1}^K\theta _j^{1-N/2}\left( \frac{S^{N/2}+O(\varepsilon ^{N-2})}{S^{(N-2)/2}+O(\varepsilon ^k)}\right) ^{N/2}\\&=\sum _{j=1}^K\theta _j^{1-N/2}\bigl (S+O(\varepsilon ^{N-2})\bigr )^{N/2}\\&=\sum _{j=1}^K\theta _j^{1-N/2}S^{N/2}+O(\varepsilon ^{N-2}). \end{aligned}\end{aligned}$$
Now we estimate \(\int _{{\mathbb {R}}^N}\widetilde{G}(s_\varepsilon \star v^\varepsilon )\,dx\) as \(\varepsilon \rightarrow 0^+\). From (2.4) and the fact, due to (A2) and (A5), that \(\widetilde{G}(u)>0\) if \(u\ne 0\), we deduce there exists \(C>0\) such that \(\widetilde{G}(u)\ge C|u|^p\) if \(|u|\le 1\) and \(\widetilde{G}(u)\ge C|u|^q\) if \(|u|>1\).
$$\begin{aligned}\begin{aligned} \int _{{\mathbb {R}}^N}\widetilde{G}(s_\varepsilon \star v^\varepsilon )\,dx&\ge C s_\varepsilon ^{N(p/2-1)}\int _{{\mathbb {R}}^N}|v^\varepsilon |^p\chi _{\{|s_\varepsilon ^{N/2} v^\varepsilon |\le 1\}}\,dx\\&\quad +C s_\varepsilon ^{N(q/2-1)}\int _{{\mathbb {R}}^N}|v^\varepsilon |^q\chi _{\{|s_\varepsilon ^{N/2} v^\varepsilon |> 1\}}\,dx\\&\ge C' |\phi u_0^\varepsilon |_2^{N(p/2-1)-p}\int _{{\mathbb {R}}^N}|\phi u_0^\varepsilon |^p\chi _{\{|s_\varepsilon ^{N/2} v^\varepsilon |\le 1\}}\,dx\\&\quad +C' |\phi u_0^\varepsilon |_2^{N(q/2-1)-q}\int _{{\mathbb {R}}^N}|\phi u_0^\varepsilon |^q\chi _{\{|s_\varepsilon ^{N/2} v^\varepsilon |> 1\}}\,dx\\&\ge C' |\phi u_0^\varepsilon |_2^{(N/2-1)p-N}\int _{{\mathbb {R}}^N}|\phi u_0^\varepsilon |^p\chi _{\{|s_\varepsilon ^{N/2}v^\varepsilon |\le 1\}}\chi _{\{\phi u_0^\varepsilon \ge 1\}}\,dx\\&\quad +C' |\phi u_0^\varepsilon |_2^{(N/2-1)q-N}\int _{{\mathbb {R}}^N}|\phi u_0^\varepsilon |^q\chi _{\{|s_\varepsilon ^{N/2} v^\varepsilon |> 1\}}\chi _{\{\phi u_0^\varepsilon \ge 1\}}\,dx\\&\ge C' \min \big \{|\phi u_0^\varepsilon |_2^{(N/2-1)p-N},|\phi u_0^\varepsilon |_2^{(N/2-1)q-N}\big \}\\&\qquad \int _{{\mathbb {R}}^N}|\phi u_0^\varepsilon |^{\min \{p,q\}}\chi _{\{\phi u_0^\varepsilon \ge 1\}}\,dx\\&\ge C'' |\phi u_0^\varepsilon |_2^{(N/2-1)\max \{p,q\}-N}\varepsilon ^{N-(N/2-1)\min \{p,q\}} \end{aligned}\end{aligned}$$
as \(\varepsilon \rightarrow 0^+\) because \((N/2-1)r-N<0\), \(r\in \{p,q\}\), where \(C',C''>0\) are constants. There follows that
$$\begin{aligned} c\le \sum _{j=1}^K\theta _j^{1-N/2}\frac{S^{N/2}}{N}+O(\varepsilon ^{N-2})-C''|\phi u_0^\varepsilon |_2^{(N/2-1)\max \{p,q\}-N}\varepsilon ^{N-(N/2-1)\min \{p,q\}}. \end{aligned}$$
If \(N=3\), then
$$\begin{aligned}\begin{aligned} |\phi u_0^\varepsilon |_2^{(N/2-1)\max \{p,q\}-N}\varepsilon ^{N-(N/2-1)\min \{p,q\}}&=\frac{\varepsilon ^{3-\min \{p,q\}/2}}{(C_3\varepsilon )^{3/2-\max \{p,q\}/4}+O(\varepsilon ^{3-\max \{p,q\}/2})}\\&\ge C\varepsilon ^{(3+\max \{p,q\}/2-\min \{p,q\})/2} \end{aligned}\end{aligned}$$
and \(0<(3+\max \{p,q\}/2-\min \{p,q\})/2<1=N-2\). If \(N=4\), then
$$\begin{aligned}\begin{aligned} |\phi u_0^\varepsilon |_2^{(N/2-1)\max \{p,q\}-N}\varepsilon ^{N-(N/2-1)\min \{p,q\}}&=\frac{\varepsilon ^{4-\min \{p,q\}}}{(\sqrt{C_4|\ln \varepsilon |}\,\varepsilon )^{4-\max \{p,q\}}+O(\varepsilon ^{4-\max \{p,q\}})}\\&\ge C\varepsilon ^{|p-q|}|\ln \varepsilon |^{\max \{p,q\}/2-2} \end{aligned}\end{aligned}$$
and \(|p-q|<2=N-2\), \(\max \{p,q\}-4\le 0\), and \(|p-q|>0\) or \(\max \{p,q\}-4<0\). Either way, \(O(\varepsilon ^{N-2})-C''|\phi u_0^\varepsilon |_2^{(N/2-1)\max \{p,q\}-N}\varepsilon ^{N-(N/2-1)\min \{p,q\}}<0\) for sufficiently small \(\varepsilon \) and
$$\begin{aligned} c<\sum _{j=1}^K\theta _j^{1-N/2}\frac{S^{N/2}}{N}. \end{aligned}$$
Since there exist nonlinearities that do not satisfy the assumptions of Proposition 2.6(ii), we provide other sufficient conditions for (1.9) to hold.
Lemma 2.7
Assume that (A1)–(A5) are satisfied and \(\theta \in (0,\infty )^K\).
(a) If \(K=1\), \(\eta =0\), and \(\displaystyle \lim _{u\rightarrow 0}\widetilde{G}(u)/|u|^{2^*}=\infty \), then there exists \(\rho _0>0\) such that (1.9) is satisfied provided that \(\rho >\rho _0\).
(b) If (1.8) holds and \(\displaystyle \lim _{|u|\rightarrow \infty }\widetilde{G}(u)/|u|^{2_N}=\infty \), then there exists \(\theta _0>0\) such that (1.9) is satisfied provided that \(\theta _i<\theta _0\) for some \(i\in \{1,\ldots ,K\}\).
Proof
(a) We prove that \(c\rightarrow 0\) as \(\rho \rightarrow \infty \) (note that (1.8) is satisfied for every \(\rho >0\) because \(\eta =0\)). Let \(\rho _n \rightarrow \infty \) and take \(u \in L^\infty ({\mathbb {R}}^N)\) such that \(|u|_2=1\). Without loss of generality we may assume that \(\rho _n > 1\) and define \(u_n := \rho _n u\) so that \(|u_n|_2=\rho _n\). From Lemma 2.3 there exists \(s_n >0\) such that \(v_n :=s_n^{N/2} u_n (s_n \cdot ) \in {{\mathcal {M}}}\). Moreover, \(|v_n|_2=|u_n|_2\), hence
$$\begin{aligned} 0 < \inf \{J(v) : v\in {{\mathcal {M}}}, \, |v|_2\le \rho _n\} \le J(v_n) \le \frac{1}{2} \int _{{\mathbb {R}}^N} |\nabla v_n|^2 \, dx = \frac{1}{2} (s_n\rho _n)^2 \int _{{\mathbb {R}}^N} |\nabla u|^2 \, dx, \end{aligned}$$
so it is enough to show that \(s_n \rho _n \rightarrow 0\). Note that
$$\begin{aligned} \left( s_n\rho _n\right) ^2 \int _{{\mathbb {R}}^N} |\nabla u|^2 \, dx = \int _{{\mathbb {R}}^N} |\nabla v_n|^2 \, dx = \frac{N}{2} \int _{{\mathbb {R}}^N} H(v_n) \, dx = \frac{N}{2} s_n^{-N} \int _{{\mathbb {R}}^N} H(s_n^{N/2} \rho _n u) \, dx \end{aligned}$$
and
$$\begin{aligned} \int _{{\mathbb {R}}^N} |\nabla u|^2 \, dx = \frac{N}{2} s_n^{-N-2} \rho _n^{-2} \int _{{\mathbb {R}}^N} H(s_n^{N/2} \rho _n u) \, dx = \frac{N}{2} \rho _n^{4/N} \int _{{\mathbb {R}}^N} \frac{H(s_n^{N/2} \rho _n u)}{ \left| s_n^{N/2} \rho _n u \right| ^{2_N} } |u|^{2_N} \, dx. \end{aligned}$$
There follows that
$$\begin{aligned} \lim _n\int _{{\mathbb {R}}^N} \frac{H(s_n^{N/2} \rho _n u)}{ \left| s_n^{N/2} \rho _n u \right| ^{2_N} } |u|^{2_N} \, dx = 0, \end{aligned}$$
whence \(s_n^{N/2} \rho _n \rightarrow 0\). Fix \(\varepsilon > 0\). From (A5) and the fact that \(\lim _{t\rightarrow 0}G(t)/|t|^{2^*}=\infty \), there follows that
$$\begin{aligned} H(s) \ge \frac{4}{N} G(s) \ge \varepsilon ^{-1} |s|^{2^*} \end{aligned}$$
for sufficiently small |s|. Then, taking into account that \(u \in L^\infty ({\mathbb {R}}^N)\), for sufficiently large n
$$\begin{aligned}\begin{aligned} \int _{{\mathbb {R}}^N} |\nabla u|^2 \, dx&= \frac{N}{2} s_n^{-N-2} \frac{1}{\rho _n^2} \int _{{\mathbb {R}}^N} H(s_n^{N/2} \rho _n^2 u) \, dx \ge \varepsilon ^{-1} \frac{N}{2} s_n^{-N-2} \frac{1}{\rho _n^2} \left| s_n^{N/2} \rho _n \right| ^{2^*} |u|_{2^*}^{2^*}\\&= \varepsilon ^{-1} \frac{N}{2} (s_n \rho _n)^{\frac{4}{N-2}}|u|_{2^*}^{2^*} \end{aligned}\end{aligned}$$
and \(s_n \rho _n \rightarrow 0\) as \(n \rightarrow \infty \), which completes the proof.
(b) Take any \(u_0\in {{\mathcal {D}}}\setminus \{0\}\) and note that (2.2) holds. In view of Lemma 2.3 there exists \(s_0>0\) such that \(s_0\star u_0\in {{\mathcal {M}}}\) and
$$\begin{aligned} c\le J(s_0\star u_0)\le \max _{s>0}J(s\star u_0)\le \max _{s>0}\frac{s^2}{2}\int _{{\mathbb {R}}^N}|\nabla u_0|^2\,dx-\int _{{\mathbb {R}}^N}\frac{\widetilde{G}(s^{N/2}u_0)}{s^N}\,dx. \end{aligned}$$
Observe that the latter expression is finite due to Lemma 2.3 with \(\theta =0\). Hence we can take \(\theta _0>0\) so small that, if \(\theta _i<\theta _0\), then \(\sum _{j=1}^K\theta _j^{1-N/2}S^{N/2}/N\ge \theta _i^{1-N/2}S^{N/2}/N\) is greater than the right-hand side of the formula above. \(\square \)
We give explicit examples of nonlinearities that do not satisfy the assumptions of Proposition 2.6. Let \(N=3\) and \(\varepsilon >0\) be sufficiently small. If \(\widetilde{g}(u)=\widetilde{g}_1(u)=\min \{|u|^{4-\varepsilon },|u|^{4/3}\}u\) and if \(\theta =\theta _1\) is not sufficiently small, then we can use Lemma 2.7 (a) provided that \(\rho =\rho _1\) is sufficiently large, but not part (b). If G is of the form (1.10) and
$$\begin{aligned} \widetilde{g}_i(u)=\min \{|u|^{4},|u|^{4/3+\varepsilon }\}u \end{aligned}$$
(2.5)
and if \(K=2\) or \(\rho \) is not sufficiently large, then we can use Lemma 2.7 (b) provided that \(\theta _i\) is sufficiently small for some \(i\in \{1\dots ,K\}\), but not part (a).
In view of Lemma 2.4, any minimizing sequence \((u^{(n)})\subset {{\mathcal {M}}}\cap {{\mathcal {D}}}\) such that \(J(u^{(n)})\rightarrow c>0\) is bounded. By the standard concentration-compactness argument [28], \(u^{(n)}\rightharpoonup {{\tilde{u}}}\) for some \({{\tilde{u}}}\ne 0\) up to a subsequence and up to translations. It is not clear, however, if \(J({{\tilde{u}}})=c\) or \({{\tilde{u}}}\in {{\mathcal {M}}}\cap {\mathcal {D}}\). Note that we can find \(R>0\) such that \( {{\tilde{u}}}(R\cdot )\in {{\mathcal {M}}}\) and in order to ensure that \(J({{\tilde{u}}})=c\) and \({{\tilde{u}}}\in {{\mathcal {D}}}\) we need to know that \(R\ge 1\). The latter crucial condition requires the profile decomposition analysis of \((u^{(n)})\) provided by the following lemma.
Lemma 2.8
Let \((u^{(n)})\subset H^1({\mathbb {R}}^N)^K\) be bounded. Then there exist sequences \(({\tilde{u}}^{(i)})_{i=0}^\infty \subset H^1({\mathbb {R}}^N)^K\) and \((y^{(i,n)})_{i=0}^\infty \subset {\mathbb {R}}^N\) such that \(y^{(0,n)}=0\), \(\lim _n|y^{(i,n)}-y^{(j,n)}|=0\) if \(i\ne j\), and for every \(i\ge 0\) and every \(F:{\mathbb {R}}^N\rightarrow {\mathbb {R}}\) of class \({{\mathcal {C}}}^1\) such that
$$\begin{aligned} \lim _{u\rightarrow 0}\frac{F(u)}{|u|^2}=\lim _{|u|\rightarrow \infty }\frac{F(u)}{|u|^{2^*}}=0 \end{aligned}$$
there holds (up to a subsequence)
$$\begin{aligned} u^{(n)}(\cdot +y^{(i,n)})&\rightharpoonup&{\tilde{u}}^{(i)}\text { as }n\rightarrow \infty \end{aligned}$$
(2.6)
$$\begin{aligned} \lim _n\int _{{\mathbb {R}}^N}|\nabla u^{(n)}|^2\,dx= & {} \sum _{j=0}^i\int _{{\mathbb {R}}^N}|\nabla {\tilde{u}}^{(j)}|^2\,dx+\lim _n\int _{{\mathbb {R}}^N}|\nabla v^{(i,n)}|^2\,dx \end{aligned}$$
(2.7)
$$\begin{aligned} \limsup _n\int _{{\mathbb {R}}^N}F(u^{(n)})\,dx= & {} \sum _{i=0}^\infty \int _{{\mathbb {R}}^N}F({\tilde{u}}^{(i)})\,dx, \end{aligned}$$
(2.8)
where \(v^{(i,n)}(x):=u^{(n)}(x)-\sum _{j=0}^{i}{\tilde{u}}^{(j)}(x-y^{(j,n)})\).
Proof
We argue similarly as in the case \(K=1\) provided in [31, Theorem 1.4]. \(\square \)
Lemma 2.9
If (A1)–(A5) and (1.8) hold and either \(\theta =0\) or \(\theta \in (0,\infty )^K\) and (1.9) is satisfied, then c is attained.
Proof
Let \((u^{(n)})\subset {{\mathcal {M}}}\cap {{\mathcal {D}}}\) such that \(\lim _nJ(u^{(n)})=c\). Then \((u^{(n)})\) is bounded due to Lemma 2.4 and, in view of Lemma 2.8, we find \(({\tilde{u}}^{(i)})_{i=0}^\infty \subset H^1({\mathbb {R}}^N)^K\) and \((y_n^{(i,n)})_{i=0}^\infty \subset {\mathbb {R}}^N\) such that (2.6)–(2.8) hold. Let \(I:=\{i\ge 0:{\tilde{u}}^{(i)}\ne 0\}\).
Suppose that \(\theta \in (0,\infty )^K\) and (1.9) is satisfied.
Claim 1. \(I\ne \emptyset \). By contradiction suppose that \({\tilde{u}}^{(i)}=0\) for every \(i\ge 0\). Then
$$\begin{aligned} \int _{{\mathbb {R}}^N} |\nabla u^{(n)}|^2 \, dx=\frac{N}{2} \int _{{\mathbb {R}}^N} H(u^{(n)}) \, dx =\frac{N}{2} \int _{{\mathbb {R}}^N} \widetilde{H}(u^{(n)}) \, dx+\sum _{j=1}^K\theta _j \int _{{\mathbb {R}}^N} |u^{(n)}_j|^{2^*} \, dx. \end{aligned}$$
Observe that (A1), (A3), and (A5) imply that
$$\begin{aligned} \lim _{u\rightarrow 0}\frac{\widetilde{H}(u)}{|u|^2}=\lim _{|u|\rightarrow \infty }\frac{\widetilde{H}(u)}{|u|^{2^*}}=0 \end{aligned}$$
and
$$\begin{aligned} o(1)+\int _{{\mathbb {R}}^N} |\nabla u^{(n)}|^2 \, dx=\sum _{j=1}^K\theta _j\int _{{\mathbb {R}}^N} |u^{(n)}_j|^{2^*} \, dx. \end{aligned}$$
(2.9)
For the sake of simplicity, let us denote \({\bar{S}}:=\left( \sum _{j=1}^K\theta _j^{1-N/2}\right) ^{2/N}S\), cf. “Appendix B”. Then
$$\begin{aligned} o(1)+\int _{{\mathbb {R}}^N} |\nabla u^{(n)}|^2 \, dx\le {\bar{S}}^{-2^*/2}\left( \int _{{\mathbb {R}}^N} |\nabla u^{(n)}|^{2} \, dx\right) ^{2^*/2}. \end{aligned}$$
Passing to a subsequence we set \(\nu :=\lim _n\int _{{\mathbb {R}}^N} |\nabla u^{(n)}|^2 \, dx>0\) from Lemma 2.2 and we get \(\nu ^{2/(N-2)}\ge {\bar{S}}^{N/(N-2)}\). Then
$$\begin{aligned} c=\lim _nJ(u^{(n)})=\lim _nJ(u^{(n)})-\frac{1}{2^*}M(u^{(n)})=\frac{1}{N}\nu \ge \frac{1}{N} {\bar{S}}^{N/2}, \end{aligned}$$
(2.10)
so we obtain a contradiction and \(I\ne \emptyset \).
Claim 2. For every \(i\in I\) there holds \(u^{(n)}(\cdot +y^{(i,n)})\rightarrow {\tilde{u}}^{(i)}\) in \({{\mathcal {D}}}^{1,2}({\mathbb {R}}^N)^K\) or \(\int _{{\mathbb {R}}^N} |\nabla {\tilde{u}}^{(i)}|^2 \, dx<\frac{N}{2}\int _{{\mathbb {R}}^N}H({\tilde{u}}^{(i)})\, dx\). Suppose that there exists \(i\in I\) such that \(\nu :=\lim _n\int _{{\mathbb {R}}^N} |\nabla v^{(n)}|^{2} \, dx>0\) (passing to a subsequence) and the reverse inequality holds, where \(v^{(n)}:=u^{(n)}(\cdot +y^{(i,n)})-{\tilde{u}}^{(i)}\). By Vitali’s convergence theorem
$$\begin{aligned} \int _{{\mathbb {R}}^N}\big (H(u^{(n)})-H(v^{(n)})\big )\, dx= & {} \int _{{\mathbb {R}}^N}\int _0^1 -\frac{d}{ds}H(u^{(n)}-s{\tilde{u}}^{(i)})\, ds\,dx\\= & {} \int _{{\mathbb {R}}^N}\int _0^1 h(u^{(n)}-s{\tilde{u}}^{(i)}){\tilde{u}}^{(i)}\,ds\, dx\\\rightarrow & {} \int _0^1 \int _{{\mathbb {R}}^N} h({\tilde{u}}^{(i)}-s{\tilde{u}}^{(i)}){\tilde{u}}^{(i)}\,dx\,ds\\= & {} \int _{{\mathbb {R}}^N}\int _0^1 -\frac{d}{ds}H({\tilde{u}}^{(i)}-s{\tilde{u}}^{(i)})\, ds\, dx\\= & {} \int _{{\mathbb {R}}^N}H({\tilde{u}}^{(i)})\, dx \end{aligned}$$
as \(n\rightarrow \infty \). Again, passing to a subsequence,
$$\begin{aligned} \int _{{\mathbb {R}}^N} |\nabla v^{(n)}|^{2} \, dx+\int _{{\mathbb {R}}^N} |\nabla {\tilde{u}}^{(i)}|^2 \, dx=\frac{N}{2}\Big (\int _{{\mathbb {R}}^N}H(v^{(n)})\, dx+\int _{{\mathbb {R}}^N}H({\tilde{u}}^{(i)})\, dx\Big )+o(1) \end{aligned}$$
and, since \(\int _{{\mathbb {R}}^N} |\nabla {\tilde{u}}^{(i)}|^2 \, dx\ge \frac{N}{2}\int _{{\mathbb {R}}^N}H({\tilde{u}}^{(i)})\, dx\), we obtain
$$\begin{aligned} \int _{{\mathbb {R}}^N} |\nabla v^{(n)}|^{2} \, dx\le \frac{N}{2}\int _{{\mathbb {R}}^N}H(v^{(n)})\, dx+o(1) \end{aligned}$$
(2.11)
and define \(R_n>0\) such that \(v^{(n)}(R_n\cdot )\in {{\mathcal {M}}}\). We want to prove that \(R_n\rightarrow 1\). If
$$\begin{aligned} \frac{N}{2}\int _{{\mathbb {R}}^N}H(v^{(n)})\,dx<\int _{{\mathbb {R}}^N}|\nabla v^{(n)}|^2\,dx \end{aligned}$$
holds for a.e. n, then from (2.11) and the fact that \(\nu >0\) we get \(R_n\rightarrow 1\). If, passing to a subsequence,
$$\begin{aligned} \int _{{\mathbb {R}}^N} |\nabla v^{(n)}|^{2} \, dx\le \frac{N}{2}\int _{{\mathbb {R}}^N}H(v^{(n)})\, dx \end{aligned}$$
holds, then we infer \(R_n\ge 1\). Note that \(\lim _n | u^{(n)}|_2^2-| v^{(n)}|_2^2=| {\tilde{u}}^{(i)}|_2^2>0\), hence \(v^{(n)}\in {{\mathcal {D}}}\) and \(v^{(n)}(R_n\cdot )\in {{\mathcal {M}}}\cap {{\mathcal {D}}}\) for a.e. n. Hence the Brezis–Lieb Lemma yields
$$\begin{aligned} \begin{aligned} c&\le J\bigl (v^{(n)}(R_n\cdot )\bigr )=J\bigl (v^{(n)}(R_n\cdot )\bigr )-\frac{1}{2}M\bigl (v^{(n)}(R_n\cdot )\bigr )\,dx\\&=\frac{1}{R^N_n}\int _{{\mathbb {R}}^N}\frac{N}{4}H(v^{(n)})-G(v^{(n)})\,dx\\&\le \int _{{\mathbb {R}}^N}\frac{N}{4}H(v^{(n)})-G(v^{(n)})\,dx\le \int _{{\mathbb {R}}^N}\frac{N}{4}H(u^{(n)})-G(u^{(n)})\,dx+o(1)\\&=J(u^{(n)})-\frac{1}{2}M(u^{(n)})+o(1) =J(u^{(n)})+o(1)=c+o(1), \end{aligned}\end{aligned}$$
(2.12)
which implies that \(R_n\rightarrow 1\) as claimed. Therefore we have that
$$\begin{aligned} \int _{{\mathbb {R}}^N} |\nabla v^{(n)}|^{2} \, dx=o(1)+\frac{N}{2}\int _{{\mathbb {R}}^N}H(v^{(n)})\, dx=o(1)+\sum _{j=1}^K\theta _j\int _{{\mathbb {R}}^N} |v_j^{(n)}|^{2^*} \, dx\nonumber \\ \end{aligned}$$
(2.13)
and as in Claim 1 we get \(\nu ^{2/(N-2)}\ge {\bar{S}}^{N/(N-2)}\). Since \(J(u^{(n)})-J(v^{(n)})=J({\tilde{u}}^{(i)})+o(1)\) and \(J({\tilde{u}}^{(i)})\ge \int _{{\mathbb {R}}^N}\frac{N}{4}H({\tilde{u}}^{(i)})-G({\tilde{u}}^{(i)})\,dx\ge 0\), we have
$$\begin{aligned} c= & {} \lim _nJ({\tilde{u}}^{(i)})+J(v^{(n)})=J({\tilde{u}}^{(i)})+\frac{1}{2}\nu -\frac{1}{2^*}\lim _n\sum _{j=1}^K\theta _j\int _{{\mathbb {R}}^N}|v_j^{(n)}|^{2^*}\,dx\nonumber \\\ge & {} \frac{1}{N}\nu \ge \frac{1}{N}{\bar{S}}^{N/2}, \end{aligned}$$
(2.14)
a contradiction.
Conclusion. Let \(i\in I\) and, for simplicity, let us denote \({\tilde{u}}^{(i)}=:{\tilde{u}}\). If \(\int _{{\mathbb {R}}^N} |\nabla {\tilde{u}}|^2 \, dx<\frac{N}{2}\int _{{\mathbb {R}}^N}H({\tilde{u}})\, dx\), then there exists \(R>1\) such that \({{\tilde{u}}}(R\cdot )\in {{\mathcal {M}}}\), whence \({\tilde{u}}(R\cdot )\in {{\mathcal {D}}}\). Hence Fatou’s Lemma yields
$$\begin{aligned} \begin{aligned} c&\le J\bigl ({{\tilde{u}}}(R\cdot )\bigr )=J\bigl ({{\tilde{u}}}(R\cdot )\bigr )-\frac{1}{2}M\bigl ({{\tilde{u}}}(R\cdot )\bigr )\,dx=\frac{1}{R^N}\int _{{\mathbb {R}}^N}\frac{N}{4}H({{\tilde{u}}})-G({\tilde{u}})\,dx\\&<\liminf _n\int _{{\mathbb {R}}^N}\frac{N}{4}H(u^{(n)})-G(u^{(n)})\,dx=\liminf _nJ(u^{(n)})-\frac{1}{2}M(u^{(n)})\\&=\liminf _nJ(u^{(n)})=c, \end{aligned} \end{aligned}$$
(2.15)
which is a contradiction. Therefore \(u^{(n)}(\cdot +y^{(i,n)})\rightarrow {\tilde{u}}\) in \({{\mathcal {D}}}^{1,2}({\mathbb {R}}^N)^K\) (which, together with (2.7), implies that I is a singleton) and, consequently, in \(L^{2^*}({\mathbb {R}}^N)^K\). Moreover, in virtue of the Brezis–Lieb lemma, \(\int _{{\mathbb {R}}^N}H(u^{(n)})\,dx\rightarrow \int _{{\mathbb {R}}^N}H({\tilde{u}})\,dx\) because, from the interpolation inequality,
$$\begin{aligned}\begin{aligned} \int _{{\mathbb {R}}^N}H(u^{(n)}-{\tilde{u}})\,dx&\le C(|u^{(n)}-{\tilde{u}}|_{2_N}^{2_N}+|u^{(n)}-{\tilde{u}}|_{2^*}^{2^*})\\&\le C(|u^{(n)}-{\tilde{u}}|_2^{2t}|u^{(n)}-{\tilde{u}}|_{2^*}^{2^*(1-t)}+|u^{(n)}-{\tilde{u}}|_{2^*}^{2^*})\rightarrow 0 \end{aligned}\end{aligned}$$
for some \(C>0\) and \(t=\frac{2^*-2_N}{2^*-2}\). Hence \({\tilde{u}}\in {{\mathcal {M}}}\cap {{\mathcal {D}}}\), and, arguing as before but with \(R=1\), \(J({\tilde{u}})=c\).
Now we consider the case \(\theta =0\) and in a similar way we prove Claim 1 and Claim 2 by getting a contradiction in (2.9) and (2.13). Finally note that arguments of Conclusion apply in the case \(\theta =0\) as well. \(\square \)
For \(f:{\mathbb {R}}^N\rightarrow {\mathbb {R}}\) measurable we denote by \(f^*\) the Schwarz rearrangement of |f|. Likewise, if \(A\subset {\mathbb {R}}^N\) is measurable, we denote by \(A^*\) the Schwarz rearrangement of A [10, 26].
Lemma 2.10
Assume that (A1)–(A5) and (1.8) are verified, G is of the form (1.10), and either \(\theta =0\) or \(\theta \in (0,\infty )^K\) and (1.9) holds. Then c is attained by a K-tuple of radial, nonnegative and radially nonincreasing functions.
Proof
Let \({\tilde{u}}\in {{\mathcal {M}}}\cap {{\mathcal {D}}}\) such that \(J({\tilde{u}})=c\) be given by Lemma 2.9. For every \(j\in \{1,\dots ,K\}\) let \(u_j\) be the Schwarz rearrangement of \(|{\tilde{u}}_j|\) and denote \(u:=(u_1,\dots ,u_K)\). Let \(a=a(u)\) be determined by Lemma 2.3. In view of the properties of the Schwarz rearrangement [10, 26], we obtain
$$\begin{aligned} M(1\star u)=M(u)\le M({\tilde{u}})=0, \end{aligned}$$
therefore in view of Lemma 2.3 we have that \(a\le 1\) and, consequently, \(M(a\star {\tilde{u}})\ge 0\). Let
$$\begin{aligned} d:=\frac{N}{2}\max _{j=1,\dots , L}\Big (\sum _{i=1}^Kr_{i,j}-2\Big )\ge 2. \end{aligned}$$
Then
$$\begin{aligned}\begin{aligned} c&\le \, J(a\star u)=J(a\star u)-\frac{1}{d}M(a\star u)\\&= \, \int _{{\mathbb {R}}^N}\sum _{i=1}^Ka^2\biggl (\frac{1}{2}-\frac{1}{d}\biggr )|\nabla u_i|^2+\frac{1}{a^N}\biggl (\frac{N}{2d}H_i(a^{N/2}u_i)-G_i(a^{N/2}u_i)\biggr )\,dx\\&\quad -\frac{1}{a^N} \sum _{j=1}^L\beta _j\bigg (1-\frac{1}{d}\Big (\sum _{i=1}^Kr_{i,j}-2\Big )\bigg )\prod _{i=1}^K|a^{N/2}u_i|^{r_{i,j}}\\&\le \, \int _{{\mathbb {R}}^N}\sum _{i=1}^Ka^2\biggl (\frac{1}{2}-\frac{1}{d}\biggr )|\nabla {\tilde{u}}_i|^2+\frac{1}{a^N}\biggl (\frac{N}{2d}H_i(a^{N/2}|{\tilde{u}}_i|)-G_i(a^{N/2}|{\tilde{u}}_i|)\biggr )\,dx\\&\quad -\frac{1}{a^N} \sum _{j=1}^L\beta _j\bigg (1-\frac{1}{d}\Big (\sum _{i=1}^Kr_{i,j}-2\Big )\bigg )\prod _{i=1}^K|a^{N/2}{\tilde{u}}_i|^{r_{i,j}}\\&= \, J(a\star {\tilde{u}})-\frac{1}{d}M(a\star {\tilde{u}})\le J(a\star {\tilde{u}})\le J({\tilde{u}})=c, \end{aligned}\end{aligned}$$
i.e., \(J(a\star u)=c\). \(\square \)
Lemma 2.11
-
(a)
Assume that (A1)–(A3), (A4,\(\preceq \)), (A5), and (1.8) hold and let \(u\in {{\mathcal {M}}}\cap {{\mathcal {D}}}\) such that \(J(u)=c\) and \(u_i\) is radial for every \(i\in \{1,\dots ,K\}\). Then u is of class \({{\mathcal {C}}}^2\).
-
(b)
If, in addition, \(N\in \{3,4\}\), G is of the form (1.10), and \(u_i\) is nonnegative for every \(i\in \{1,\dots ,K\}\), then \(u\in \partial {{\mathcal {D}}}\). Moreover, for every \(i\in \{1,\dots ,K\}\), either \(|u_i|_2=\rho _i\) or \(u_i=0\).
Proof
(a) In Proposition A.1 we set \(f=J\), \(\phi _i(v)=|v_i|_2^2-\rho _i^2\), \(1\le i\le m=K\), \(\psi _1(v)=M(v)\), \(n=1\), \(v\in {{\mathcal {H}}}=H^1({\mathbb {R}}^N)^K\). Then there exist \((\lambda _1,\dots ,\lambda _K)\in [0,\infty )^K\) and \(\sigma \in {\mathbb {R}}\) such that
$$\begin{aligned} -(1-2\sigma )\Delta u_i+\lambda _iu_i=\partial _iG(u)-\sigma \frac{N}{2}\partial _iH(u) \end{aligned}$$
(2.16)
for every \(i\in \{1,\dots ,K\}\) and u satisfies the Nehari identity
$$\begin{aligned} (1\!-\!2\sigma )\!\int _{{\mathbb {R}}^N}|\nabla u|^2\,dx\!+\!\sum _{i=1}^K\int _{{\mathbb {R}}^N}\lambda _i|u_i|^2\,dx\!+\!\int _{{\mathbb {R}}^N}\sigma \frac{N}{2}\langle h(u),u\rangle \!-\!\langle g(u),u\rangle \,dx\!=\!0.\qquad \end{aligned}$$
(2.17)
If \(\sigma =\frac{1}{2}\), then (A4,\(\preceq \)), (A5), and (2.17) yield
$$\begin{aligned}\begin{aligned} 0&\ge \int _{{\mathbb {R}}^N}\frac{N}{4}\langle h(u),u\rangle -\langle g(u),u\rangle \,dx=\int _{{\mathbb {R}}^N}\frac{N}{4}\langle h(u),u\rangle -H(u)-2G(u)\,dx\\&>\int _{{\mathbb {R}}^N}\frac{N}{2}H(u)-2G(u)\,dx\ge 0, \end{aligned}\end{aligned}$$
a contradiction. Hence \(\sigma \ne \frac{1}{2}\) and u satisfies also the Pohožaev identity
$$\begin{aligned} (1-2\sigma )\int _{{\mathbb {R}}^N}|\nabla u|^2\,dx+\frac{2^*}{2}\sum _{i=1}^K\int _{{\mathbb {R}}^N}\lambda _i|u_i|^2\,dx+2^*\int _{{\mathbb {R}}^N}\sigma \frac{N}{2}H(u)-G(u)\,dx=0.\nonumber \\ \end{aligned}$$
(2.18)
Combining (2.17) and (2.18) we obtain
$$\begin{aligned} (1-2\sigma )\int _{{\mathbb {R}}^N}|\nabla u|^2\,dx+\frac{N}{2}\int _{{\mathbb {R}}^N}\sigma N\Bigl (\frac{1}{2}\langle h(u),u\rangle -H(u)\Bigr )-H(u)\,dx=0 \end{aligned}$$
and, using the fact that \(u\in {{\mathcal {M}}}\),
$$\begin{aligned} (1-2\sigma )\int _{{\mathbb {R}}^N}H(u)\,dx+\int _{{\mathbb {R}}^N}\sigma N\Bigl (\frac{1}{2}\langle h(u),u\rangle -H(u)\Bigr )-H(u)\,dx=0, \end{aligned}$$
that is
$$\begin{aligned} \sigma \int _{{\mathbb {R}}^N}\langle h(u),u\rangle -2_NH(u)\,dx=0, \end{aligned}$$
which together with (A4,\(\preceq \)) yields \(\sigma =0\). In view of [12, Theorem 2.3], \(u\in W^{2,q}_loc ({\mathbb {R}}^N)^K\) for all \(q < \infty \), hence \(u\in {{\mathcal {C}}}^{1,\alpha }_loc ({\mathbb {R}}^N)^K\) for all \(\alpha <1\). Then, arguing as in the proof of [10, Lemma 1], we have that u is of class \({{\mathcal {C}}}^2\).
(b) First we show that \(u\in \partial {{\mathcal {D}}}\). Suppose by contradiction that \(|u_i|_2<\rho _i\) for every i. Then \(\lambda _1=\dots =\lambda _K=0\) and from (2.17) and (2.18) (with \(\sigma =0\) as in proof of (a)) there follows
$$\begin{aligned} \int _{{\mathbb {R}}^N}\langle g(u),u\rangle -2^*G(u)\,dx=0. \end{aligned}$$
(2.19)
In view of (A5)
$$\begin{aligned} 2^* G\bigl (u(x)\bigr )=\langle g\bigl (u(x)\bigr ),u(x)\rangle \end{aligned}$$
(2.20)
for every \(x\in {\mathbb {R}}^N\). Since \(G_i\) satisfies (A5), we get \(2^* G_i(u_i(x))\ge g_i(u_i(x))u_i(x)\) for all \(i\in \{1,\dots ,K\}\) and note that
$$\begin{aligned} 2^*\sum _{j=1}^L\beta _j\prod _{i=1}^K|u_i(x)|^{r_{i,j}}\ge \sum _{j=1}^L\beta _j\sum _{k=1}^K r_{k,j}\prod _{i=1}^K|u_i(x)|^{r_{i,j}}, \end{aligned}$$
since \(\sum _{k=1}^K r_{k,j}<2^*\). Hence, from (2.20), the inequalities above are actually equalities. On the other hand, for every \(j\in \{1,\dots ,L\}\), \(\sum _{i=1}^Kr_{i,j}<2^*\), which yields \(\beta _j=0\) or \(\prod _{i=1}^K|u_i(x)|^{r_{i,j}}=0\) for every \(x\in {\mathbb {R}}^N\), so that the coupling term is zero and thus
$$\begin{aligned} 2^* G_i(u_i(x))= g_i(u_i(x))u_i(x) \end{aligned}$$
for every \(i\in \{1,\dots ,K\}\) and every \(x\in {\mathbb {R}}^N\).
Now fix \(i\in \{1,\dots ,K\}\) such that \(u_i\ne 0\). Since \(u_i\in H^1({\mathbb {R}}^N)\cap {{\mathcal {C}}}^2\), there exists an open interval \(I \subset {\mathbb {R}}\) such that \(0 \in {\overline{I}}\) and \(2^* G_i(s)=g_i(s)s\) for \(s\in {\overline{I}}\). Then \(G_i(s)=\theta _i|s|^{2^*}/2^*\) for \(s\in {\overline{I}}\) and \(u_i\) solves \(-\Delta u_i = \theta _i |u_i|^{2^* - 2 } u_i\). Hence, since \(u_i\ge 0\), \(u_i\) is an Aubin–Talenti instanton, up to scaling and translations, which is not \(L^2\)-integrable because \(N \in \{3,4\}\). Therefore \(u\in \partial {{\mathcal {D}}}\).
Now we prove the second part and suppose that there exists \(\nu \in \{1,\dots ,K-1\}\) such that, up to changing the order, \(|u_i|_2<\rho _i\) for every \(i\in \{1,\dots ,\nu \}\) and \(|u_i|_2=\rho _i\) for every \(i\in \{\nu +1,\dots ,K\}\). From Proposition A.1 there exist \(0=\lambda _1=\dots =\lambda _\nu \le \lambda _{\nu +1},\dots ,\lambda _K\) and \(\sigma \in {\mathbb {R}}\) such that
$$\begin{aligned} {\left\{ \begin{array}{ll} -(1-2\sigma )\Delta u_i=\partial _iG(u)-\sigma \frac{N}{2}\partial _iH(u) \quad \text {for every }i\in \{1,\dots ,\nu \}\\ -(1-2\sigma )\Delta u_i+\lambda _iu_i=\partial _iG(u)-\sigma \frac{N}{2}\partial _iH(u) \quad \text {for every }i\in \{\nu +1,\dots ,K\} \end{array}\right. } \end{aligned}$$
(2.21)
and as before we obtain \(\sigma =0\). Since \(G_i\) satisfies the scalar variant of (A5), \((0,\infty )\ni s\mapsto G_i(s)/s^{2_N}\in {\mathbb {R}}\) is nondecreasing, hence \(G_i\) is nondecreasing as well for all i. Then, the first \(\nu \) equations in (2.21) with \(\sigma =0\) yield \(-\Delta u_i\ge 0\) for \(i\in \{1,\dots ,\nu \}\). Since \(u\in L^{\frac{N}{N-2}}({\mathbb {R}}^N)^K\) as \(N\in \{3,4\}\), u is of class \({{\mathcal {C}}}^2\), and \(u_i\ge 0\), [21, Lemma A.2] implies \(u_i=0\) for every \(i\in \{1,\dots ,\nu \}\). Notice that we have proved that \(\lambda _i=0\) implies that \(u_i=0\). \(\square \)
Remark 2.12
We point out that in addition to the assumptions of Lemma 2.11, i.e., (A1)–(A3), (A4,\(\preceq \)), (A5), and (1.8) hold, \(u\in {{\mathcal {M}}}\cap {{\mathcal {D}}}\), and \(J(u)=c\), we can show that \(u\in \partial {{\mathcal {D}}}\) for any dimension \(N\ge 3\) and without the assumption that G is of the form (1.10) provided that \(H\preceq (2^*-2)G\) holds. Indeed, observe that (2.19) contradicts \(H\preceq (2^*-2)G\) and Lemma 2.1.
Proof of Theorem 1.1
Statement (a) follows from Lemmas 2.9 and 2.10. From Lemma 2.11 (a), u is of class \({{\mathcal {C}}}^2\), while from Proposition A.1 there exist \((\lambda _1,\dots ,\lambda _K)\in [0,\infty )^K\) and \(\sigma \in {\mathbb {R}}\) such that (2.16) holds and \(\sigma =0\) as in the proof of Lemma 2.11 (a). \(\square \)
Proof of Theorem 1.2
It follows from Lemma 2.11 (b), Theorem 1.1 (b), and the maximum principle [18, Lemma IX.V.1] (the implication \(u_i\ne 0\Rightarrow \lambda _i>0\) is proved as in the proof of Lemma 2.11 (b)). \(\square \)
Proof of Corollary 1.4
From Theorem 1.1, there exists \(u\in {{\mathcal {M}}}\cap {{\mathcal {D}}}\cap {{\mathcal {C}}}^2({\mathbb {R}}^N)\) and \(\lambda \ge 0\) such that \(J(u)=c\) and \((\lambda ,u)\) is a solution to (1.3). Observe that, from Lemma 2.10, we can assume that u is radial, nonnegative (in fact, positive owing to the maximum principle and because G is nondecreasing on \((0,\infty )\)), and radially nonincreasing provided that G is even. Next, since \(N\in \{3,4\}\) and G is even or \(H\preceq (2^*-2)G\), arguing as in the proof of Lemma 2.11 (b) – see also Remark 2.12 – we obtain that \(u\in \partial {{\mathcal {D}}}={{\mathcal {S}}}\) and \((\lambda ,u)\) is a solution to (1.4). Since u satisfies the Nehari and the Pohožaev inequalities, we get
$$\begin{aligned} \lambda \frac{2}{N-2}\int _{{\mathbb {R}}^N}|u|^2\,dx=\int _{{\mathbb {R}}^N}2^*G(u)-g(u)u\,dx \end{aligned}$$
and, again arguing as in the proof of Lemma 2.11 (b) or Remark 2.12, we obtain \(\int _{{\mathbb {R}}^N}2^*G(u)-g(u)u\,dx>0\), whence \(\lambda >0\). Finally, suppose that G is even, so u is (in particular) positive and radially nonincreasing. Note that \(u(x)\rightarrow 0\) as \(|x|\rightarrow \infty \) and that there exists \(t_0>0\) such that \(g(t)\le \lambda t\) for every \(t\in [0,t_0]\) and \(g(t)>\lambda t\) for every \(t>t_0\). If u is constant in the annulus \(A:=\{\tau _1<|x|<\tau _2\}\) for some \(\tau _2>\tau _1>0\), then \(0=-\Delta u=g(u)-\lambda u\) in A, thus \(-\Delta u\le 0\) in \(\Omega :=\{|x|>\tau _1\}\) because u is radially nonincreasing and \(u(x)\le t_0\) if \(x\in \Omega \). At the same time, u attains the maximum over \({\overline{\Omega }}\) at every point of A, which is impossible because \(u|_\Omega \) is not constant. This proves that u is radially decreasing. \(\square \)
Lemma 2.13
Suppose that \(K=2\), \(L=1\), and the assumptions in Lemma 2.11 (b) hold. If \(r_{1,1}+r_{2,1}>2_N\) and \(\beta _1\) is sufficiently large, then \(u\in {{\mathcal {S}}}\).
Proof
Since \(L=1\), we denote \(\beta _1\), \(r_{1,1}\), \(r_{2,1}\) by \(\beta \), \(r_{1}\), \(r_{2}\) respectively. Suppose by contradiction that \(u_1=0\) or \(u_2=0\), say \(u_1=0\), which implies that \(|u_2|_2=\rho _2\). We want to find a suitable \(w\in {{\mathcal {S}}}\) such that
$$\begin{aligned} J(a\star w)<c=J(0,u_2), \end{aligned}$$
(2.22)
where \(a=a(w)\) is defined in Lemma 2.3 (note that \(a(w)=b(w)\) because (A4,\(\preceq \)) holds), which is impossible. First we show that c does not depend on \(\beta \). Consider the functional
$$\begin{aligned} J_*:v\in H^1({\mathbb {R}}^N)\mapsto \int _{{\mathbb {R}}^N}\frac{1}{2}|\nabla v|^2-G_2(v)\,dx\in {\mathbb {R}}\end{aligned}$$
and the sets
$$\begin{aligned}\begin{aligned} {{\mathcal {D}}}_*&:= \left\{ v \in H^1({\mathbb {R}}^N) \ : \ \int _{{\mathbb {R}}^N} |v|^2 \, dx \le \rho _2^2 \right\} ,\\ {{\mathcal {M}}}_*&:= \left\{ v \in H^1({\mathbb {R}}^N) \setminus \{0\} \ : \ \int _{{\mathbb {R}}^N} |v|^2 \, dx = \frac{N}{2} \int _{{\mathbb {R}}^N}H_2(v)\,dx \right\} . \end{aligned}\end{aligned}$$
Observe that \(J(0,v)=J_*(v)\) for \(v\in H^1({\mathbb {R}}^N)\). Moreover \((0,v)\in {{\mathcal {D}}}\) if and only if \(v\in {{\mathcal {D}}}_*\), and \((0,v)\in {{\mathcal {M}}}\) if and only if \(v\in {{\mathcal {M}}}_*\). In particular,
$$\begin{aligned} c=J(0,u_2)=J_*(u_2)\ge \inf _{{{\mathcal {M}}}_*\cap {{\mathcal {D}}}_*}J_*=\inf \{J(0,v):(0,v)\in {{\mathcal {M}}}\cap {{\mathcal {D}}}\}\ge c, \end{aligned}$$
i.e., \(c=\inf _{{{\mathcal {M}}}_*\cap {{\mathcal {D}}}_*}J_*\), and the claim follows because \(J_*\), \({{\mathcal {D}}}_*\), and \({{\mathcal {M}}}_*\) do not depend on \(\beta \).
In view of Corollary 1.4, there exists \({\bar{v}}\in {{\mathcal {M}}}_*\cap \partial {{\mathcal {D}}}_*\) such that
$$\begin{aligned} J_*({\bar{v}})=\inf _{{{\mathcal {M}}}_*\cap {{\mathcal {D}}}_*}J_*=c=\inf _{{{\mathcal {M}}}_*\cap \partial {{\mathcal {D}}}_*}J_*. \end{aligned}$$
Note that \({\bar{v}}\) does not depend on \(\beta \). Define \(w=(w_1,w_2):=\bigl (\frac{\rho _1}{\rho _2}{\bar{v}},{\bar{v}}\bigr )\). From Lemma 2.3, \(a=a_\beta \) is implicitly defined by
$$\begin{aligned}\begin{aligned} \int _{{\mathbb {R}}^N}|\nabla w|^2\,dx&=\,\frac{N}{2}\int _{{\mathbb {R}}^N}\frac{G_1'(a_\beta ^{N/2}w_1)a_\beta ^{N/2}w_1-2G_1(a_\beta ^{N/2}w_1)}{a_\beta ^{N+2}}\\&\quad +\frac{G_2'(a_\beta ^{N/2}w_2)a_\beta ^{N/2}w_2-2G_2(a_\beta ^{N/2}w_2)}{a_\beta ^{N+2}}\\&\quad +\beta (r_1+r_2-2)a_\beta ^{N(r_1+r_2-2)/2-2}w_1^{r_1}w_2^{r_2}\,dx\\&\ge \,\beta (r_1+r_2-2)a_\beta ^{N(r_1+r_2-2)/2-2}\frac{N}{2}\int _{{\mathbb {R}}^N}w_1^{r_1}w_2^{r_2}\,dx, \end{aligned}\end{aligned}$$
hence there exist \(C>0\) not depending on \(\beta \) such that
$$\begin{aligned} 0<\beta a_\beta ^{N(r_1+r_2-2)/2-2}\le C, \end{aligned}$$
(2.23)
whence
$$\begin{aligned} \lim _{\beta \rightarrow \infty }a_\beta =0. \end{aligned}$$
(2.24)
Since \(a_\beta \star w\in {{\mathcal {M}}}\), we have from (A5)
$$\begin{aligned}\begin{aligned} J(a_\beta \star w)&=\int _{{\mathbb {R}}^N}\frac{N}{4}H(a_\beta \star w)-G(a_\beta \star w)\,dx\le \frac{2}{N-2}\int _{{\mathbb {R}}^N}G(a_\beta \star w)\,dx\\&=\frac{2}{N-2}\int _{{\mathbb {R}}^N}\frac{G_1(a_\beta ^{N/2}w_1)+G_2(a_\beta ^{N/2}w_2)}{a_\beta ^N}\,dx\\&\quad +\frac{2\beta a_\beta ^{N(r_1+r_2-2)/2}}{N-2}\int _{{\mathbb {R}}^N}w_1^{r_1}w_2^{r_2}\,dx, \end{aligned}\end{aligned}$$
therefore (2.22) holds true for sufficiently large \(\beta \) owing to (A1), (2.23), and (2.24). \(\square \)
Proof of Theorem 1.3
It follows from Lemma 2.13 and Theorem 1.2. \(\square \)
Now we investigate the behaviour of the ground state energy with respect to \(\rho \). For \(\rho =(\rho _1,\dots ,\rho _K)\in (0,\infty )^K\) we denote
$$\begin{aligned} {{\mathcal {D}}}(\rho ):= & {} \biggl \{u\in H^1({\mathbb {R}}^N)^K:\int _{{\mathbb {R}}^N}|u_i|^2\,dx\le \rho _i^2 \text { for every } i\in \{1,\dots ,K\}\biggr \}\\ {{\mathcal {S}}}(\rho ):= & {} \biggl \{u\in H^1({\mathbb {R}}^N)^K:\int _{{\mathbb {R}}^N}|u_i|^2\,dx=\rho _i^2 \text { for every } i\in \{1,\dots ,K\}\biggr \}\\ c(\rho ):= & {} \inf \{J(u):u\in {{\mathcal {M}}}\cap {{\mathcal {D}}}(\rho )\}. \end{aligned}$$
Proposition 2.14
Assume that (A0)–(A5) and (1.8) are satisfied.
-
(i)
If \(\theta =0\), then c is continuous and \(\lim _{\rho \rightarrow 0^+}c(\rho )=\infty \), where \(\rho \rightarrow 0^+\) means \(\rho _i\rightarrow 0^+\) for every \(i\in \{1,\dots ,K\}\).
-
(ii)
Let \(\theta \in (0,\infty )^K\) and \(\rho \in (0,\infty )^K\) . If (1.9) holds for every \(\rho '\in \prod _{j=1}^K(\rho _j-\varepsilon ,\rho _j)\) and some \(\varepsilon >0\), then c is continuous at \(\rho \). If (1.9) holds for every \(\rho '\in (0,\varepsilon )^K\) and some \(\varepsilon >0\), then \(\displaystyle \lim _{\rho '\rightarrow 0^+}c(\rho ')= \frac{1}{N}S^{N/2}\sum _{i=1}^K\theta _i^{1-N/2}\)
-
(iii)
If every ground state solution to (1.3) belongs to \({{\mathcal {S}}}(\rho )\) (e.g. if the assumptions of Theorem 1.3 are satisfied), then c is decreasing in the following sense: if \(\rho ,\rho '\in (0,\infty )^K\) are such that \(\rho _i\ge \rho _i'\) for every \(i\in \{1,\dots ,K\}\) and \(\rho _j>\rho _j'\) for some \(j\in \{1,\dots ,K\}\), then \(c(\rho )<c(\rho ')\).
Proof
Fix \(\rho \in (0,\infty )^K\) and let \(\rho ^{(n)}\rightarrow \rho \). We begin by proving the upper semicontinuity of c at \(\rho \). Let \(w\in {{\mathcal {M}}}\cap {{\mathcal {D}}}(\rho )\) such that \(J(w)=c(\rho )\), denote \(w_i^{(n)}:=\rho _i^{(n)}w_i/\rho _i\), and consider \(w^{(n)}=(w_1^{(n)},\dots ,w_K^{(n)})\in {{\mathcal {D}}}(\rho ^{(n)})\). Due to Lemma 2.3, for every n there exists \(s_n>0\) such that \(s_n\star w^{(n)}\in {{\mathcal {M}}}\). Note that
$$\begin{aligned} \frac{N}{2}\int _{{\mathbb {R}}^N}\frac{H\bigl (s_n^{N/2}(\rho _1^{(n)}w_1/\rho _1,\dots ,\rho _K^{(n)}w_K/\rho _K)\bigr )}{s_n^{N+2}}\,dx=\int _{{\mathbb {R}}^N}|\nabla w^{(n)}|^2\,dx\rightarrow \int _{{\mathbb {R}}^N}|\nabla w|^2\,dx.\nonumber \\ \end{aligned}$$
(2.25)
If \(\limsup _ns_n=\infty \), then from (A2) and (A5) the left-hand side of (2.25) tends to \(\infty \) up to a subsequence, which is a contradiction. If \(\liminf _ns_n=0\), then from (A1), (A3), (A5) and (1.8) and arguing as in Lemma 2.2 we obtain that the limit superior of the left-hand side of (2.25) is less than \(|\nabla w|_2^2\), which is again a contradiction. There follows that, up to a subsequence, \(s_n\rightarrow s\) for some \(s>0\) and \(s\star w\in {{\mathcal {M}}}\). In view of Lemma 2.3,
$$\begin{aligned} \limsup _nc(\rho ^{(n)})\le \lim _nJ(s_n\star w_n)=J(s\star w)=J(w)=c(\rho ). \end{aligned}$$
Now we prove the lower semicontinuity of c at \(\rho \). Let \(\rho ^{(n)}\rightarrow \rho \) and \(u^{(n)}\in {{\mathcal {M}}}\cap {{\mathcal {D}}}(\rho ^{(n)})\subset {{\mathcal {M}}}\cap {{\mathcal {D}}}(2\rho )\) such that \(J(u^{(n)})=c(\rho ^{(n)})\le c(\rho /2)\). In view of Lemma 2.4, \((u^{(n)})\) is bounded, hence we can consider the sequences \(({\tilde{u}}^{(i)})\) and \((y^{(i,n)})\) given by Lemma 2.8; note that \({\tilde{u}}^{(i)}\in {{\mathcal {D}}}\). We consider the case \(\theta \in (0,\infty )^K\) because the other one (i.e., \(\theta =0\)) is similar and simpler.
Claim: There exists \(i\ge 0\) such that \(\lim _nu^{(n)}(\cdot +y^{(i,n)})\rightarrow {\tilde{u}}^{(i)}\ne 0\) in \({{\mathcal {D}}}^{1,2}({\mathbb {R}}^N)^K\). The proof is similar to that of Lemma 2.9, thus we focus only on the differences. If \({\tilde{u}}^{(i)}=0\) for every \(i\ge 0\), then as in (2.10) we obtain the contradiction
$$\begin{aligned} \frac{{\bar{S}}^{N/2}}{N}>c(\rho _1-\varepsilon ,\dots ,\rho _K-\varepsilon )\ge \limsup _nc(\rho ^{(n)})=\limsup _nJ(u^{(n)})\ge \frac{{\bar{S}}^{N/2}}{N}. \end{aligned}$$
(2.26)
Let \(i\ge 0\) such that \({\tilde{u}}^{(i)}\ne 0\) and define \(v^{(n)}:=u^{(n)}(\cdot +y^{(i,n)})-{\tilde{u}}^{(i)}\). If \(\liminf _n|\nabla v^{(n)}|_2>0\) and \(|\nabla {\tilde{u}}^{(i)}|_2^2\ge \frac{N}{2}\int _{{\mathbb {R}}^N}H({\tilde{u}}^{(n)})\,dx\), then we prove that \(R_n\rightarrow 1\), where \(R_n>0\) is such that \(v^{(n)}(R_n\cdot )\in {{\mathcal {M}}}\). In particular, if up to a subsequence \(R_n\ge 1\), then as in (2.12) we get
$$\begin{aligned}\begin{aligned} 0<c(2\rho )\le c(\rho ^{(n)})&\le \frac{1}{R_n}\int _{{\mathbb {R}}^N}\frac{N}{4}H(v^{(n)})-g(v^{(n)})\,dx\le \int _{{\mathbb {R}}^N}\frac{N}{4}H(v^{(n)})-G(v^{(n)})\,dx\\&\le c(\rho ^{(n)})+o(1). \end{aligned}\end{aligned}$$
Next, as in (2.14) we obtain again the contradiction (2.26), which proves that \(v^{(n)}\rightarrow 0\) in \({{\mathcal {D}}}^{1,2}({\mathbb {R}}^N)^K\) (up to a subsequence) or \(|\nabla {\tilde{u}}^{(i)}|_2^2<\frac{N}{2}\int _{{\mathbb {R}}^N}H({\tilde{u}}^{(n)})\,dx\). In the latter case, we define \(R>1\) such that \({\tilde{u}}^{(i)}(R\cdot )\in {{\mathcal {M}}}\) as in (2.15) we get the contradiction
$$\begin{aligned} c(\rho )\le J\bigl ({\tilde{u}}^{(i)}(R\cdot )\bigr )<\limsup _nc(\rho ^{(n)})\le c(\rho ), \end{aligned}$$
where the last inequality is due to the upper semicontinuity. This proves the Claim, which yields, together with the interpolation inequality, that \({\tilde{u}}^{(i)}\in {{\mathcal {M}}}\cap {{\mathcal {D}}}\) and so
$$\begin{aligned} c(\rho )\le J({\tilde{u}}^{(i)})=\lim _nJ(u^{(n)})=\lim _nc(\rho ^{(n)}). \end{aligned}$$
Now we prove the behaviour of \(c(\rho ')\) as \(\rho '\rightarrow 0\). Let \(\rho ^{(n)}\rightarrow 0^+\) and \(u^{(n)}\in {{\mathcal {M}}}\cap {{\mathcal {D}}}(\rho ^{(n)})\) such that \(J(u^{(n)})=c(\rho ^{(n)})\). Denote \(s_n:=|\nabla u^{(n)}|_2^{-1}\) and \(w^{(n)}:=s_n\star u^{(n)}\) and note that \(s_n^{-1}\star w^{(n)}=u^{(n)}\in {{\mathcal {M}}}\), \(|\nabla w^{(n)}|_2=1\) and
$$\begin{aligned} |w^{(n)}|_2^2=|u^{(n)}|_2^2=|\rho ^{(n)}|^2\rightarrow 0 \end{aligned}$$
as \(n\rightarrow \infty \). In particular \(\bigl (w^{(n)}\bigr )\) is bounded in \(L^{2^*}({\mathbb {R}}^N)^K\) and so
$$\begin{aligned} |w^{(n)}|_{2_N}\le |w^{(n)}|_2^\frac{2}{N+2}|w^{(n)}|_{2^*}^\frac{N}{N+2}\rightarrow 0 \end{aligned}$$
as \(n\rightarrow \infty \). Suppose that \(\theta =0\). Then, in view of (A1) and (A3), for every \(s>0\)
$$\begin{aligned} \lim _n\int _{{\mathbb {R}}^N}\frac{G(s^{N/2}w^{(n)})}{s^{N}}\,dx=0 \end{aligned}$$
and, consequently,
$$\begin{aligned} J(u^{(n)})=J(s_n^{-1}\star w^{(n)})\ge J(s\star w^{(n)})=\frac{s^2}{2}-\int _{{\mathbb {R}}^N}\frac{G(s^{N/2}w^{(n)})}{s^N}\,dx=\frac{s^2}{2}+o(1), \end{aligned}$$
whence \(\lim _nJ(u^{(n)})=\infty \).
Now suppose that \(\theta \in (0,\infty )^K\). Since \(|u^{(n)}|_2^2=|\rho ^{(n)}|^2\rightarrow 0\), we get \(u^{(n)}\rightarrow 0\) in \(L^q({\mathbb {R}}^N)^K\) for \(2\le q<2^*\). Arguing as above, for every \(s>0\)
$$\begin{aligned} \lim _n\int _{{\mathbb {R}}^N}\frac{\widetilde{G}(s^{N/2}u^{(n)})}{s^{N}}\,dx=0, \end{aligned}$$
hence
$$\begin{aligned} \lim _n\int _{{\mathbb {R}}^N}\frac{G(s^{N/2}u^{(n)})}{s^{-N}}\,dx=\lim _n\int _{{\mathbb {R}}^N}\frac{\widetilde{G}(s^{N/2}u^{(n)})}{s^{-N}}\,dx+\frac{s^{2^*}}{2^*}\sum _{j=1}^K\theta _j \lim _n\int _{{\mathbb {R}}^N}|u^{(n)}_j|^{2^*}\, dx. \end{aligned}$$
Consequently,
$$\begin{aligned} J(u^{(n)})\ge & {} J(s\star u^{(n)})=\frac{s^2}{2}\int _{{\mathbb {R}}^N}|\nabla u^{(n)}|^2\,dx-\int _{{\mathbb {R}}^N}\frac{G(s^{N/2}u^{(n)})}{s^N}\,dx\\= & {} \frac{s^2}{2}\lim _n\int _{{\mathbb {R}}^N}|\nabla u^{(n)}|^2\,dx-\frac{s^{2^*}}{2^*}\sum _{j=1}^K\theta _j \lim _n\int _{{\mathbb {R}}^N}|u^{(n)}_j|^{2^*}\, dx+o(1) \end{aligned}$$
for any \(s>0\). Then, in view of Lemma B.1
$$\begin{aligned} \lim _nJ(u^{(n)})\ge & {} \max _{s>0}\; \frac{s^2}{2}\lim _n\int _{{\mathbb {R}}^N}|\nabla u^{(n)}|^2\,dx-\frac{s^{2^*}}{2^*}\sum _{j=1}^K\theta _j \lim _n\int _{{\mathbb {R}}^N}|u^{(n)}_j|^{2^*}\, dx\\= & {} \frac{1}{N}\frac{\lim _n|\nabla u^{(n)}|_2^N}{\left( \sum _{j=1}^K\theta _j\lim _n|u_j^{(n)}|_{2^*}^{2^*}\right) ^{N/2-1}}\\\ge & {} \frac{1}{N}{\bar{S}}^{\frac{N}{2}}=\frac{1}{N}S^{N/2}\sum _{i=1}^K\theta _i^{1-N/2} \end{aligned}$$
and taking into account (1.9) we obtain
$$\begin{aligned} \lim _nJ(u^{(n)})=\frac{1}{N}S^{N/2}\sum _{i=1}^K\theta _i^{1-N/2}. \end{aligned}$$
Now assume that every ground state solution to (1.3) belongs to \({{\mathcal {S}}}(\rho )\) and let \(\rho ,\rho '\) as in the statement. Let \(u\in {{\mathcal {M}}}\cap {{\mathcal {S}}}(\rho )\) and \(u'\in {{\mathcal {M}}}\cap {{\mathcal {S}}}(\rho ')\subset {{\mathcal {M}}}\cap {{\mathcal {D}}}(\rho )\setminus {{\mathcal {S}}}(\rho )\) such that \(J(u)=c(\rho )\) and \(J(u')=c(\rho ')\). Clearly \(c(\rho )\le c(\rho ')\). If \(c(\rho )=c(\rho ')\), then \(c(\rho )=J(u')\), with \(u'\in {{\mathcal {M}}}\cap {{\mathcal {D}}}(\rho )\setminus {{\mathcal {S}}}(\rho )\), which is a contradiction. \(\square \)