Skip to main content
Log in

A heat flow for the mean field equation on a finite graph

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Inspired by works of Castéras (Pac J Math 276:321–345, 2015), Li and Zhu (Calc Var Partial Differ Equ 58:1–18, 2019), Sun and Zhu (Calc Var Partial Differ Equ 60:1–26, 2021), we propose a heat flow for the mean field equation on a connected finite graph \(G=(V,E)\). Namely

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t\phi (u)=\Delta u-Q+\rho \frac{e^u}{\int _Ve^ud\mu }\\ u(\cdot ,0)=u_0, \end{array}\right. \end{aligned}$$

where \(\Delta \) is the standard graph Laplacian, \(\rho \) is a real number, \(Q:V\rightarrow {\mathbb {R}}\) is a function satisfying \(\int _VQd\mu =\rho \), and \(\phi :{\mathbb {R}}\rightarrow {\mathbb {R}}\) is one of certain smooth functions including \(\phi (s)=e^s\). We prove that for any initial data \(u_0\) and any \(\rho \in {\mathbb {R}}\), there exists a unique solution \(u:V\times [0,+\infty )\rightarrow {\mathbb {R}}\) of the above heat flow; moreover, u(xt) converges to some function \(u_\infty :V\rightarrow {\mathbb {R}}\) uniformly in \(x\in V\) as \(t\rightarrow +\infty \), and \(u_\infty \) is a solution of the mean field equation

$$\begin{aligned} \Delta u_\infty -Q+\rho \frac{e^{u_\infty }}{\int _Ve^{u_\infty }d\mu }=0. \end{aligned}$$

Though G is a finite graph, this result is still unexpected, even in the special case \(Q\equiv 0\). Our approach reads as follows: the short time existence of the heat flow follows from the ODE theory; various integral estimates give its long time existence; moreover we establish a Lojasiewicz–Simon type inequality and use it to conclude the convergence of the heat flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of \(-\Delta u=V(x)e^{u}\) in two dimensions. Commun. Partial Differ. Equ. 16, 1223–1253 (1991)

    Article  Google Scholar 

  2. Caglioti, E., Lions, P., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)

    Article  MathSciNet  Google Scholar 

  3. Caffarelli, L., Yang, Y.: Vortex condensation in the Chern–Simons Higgs model: an existence theorem. Commun. Math. Phys. 168, 321–336 (1995)

    Article  MathSciNet  Google Scholar 

  4. Castéras, J.: A mean field type flow part I: compactness of solutions to a perturbed mean field type equation. Calc. Var. Partial Differ. Equ. 53, 221–246 (2015)

    Article  MathSciNet  Google Scholar 

  5. Castéras, J.: A mean field type flow II: existence and convergence. Pac. J. Math. 276, 321–345 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chen, C., Lin, C.: Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces. Commun. Pure Appl. Math. 55, 728–771 (2002)

    Article  MathSciNet  Google Scholar 

  7. Chen, C., Lin, C.: Topological degree for a mean field equation on Riemann surfaces. Commun. Pure Appl. Math. 56, 1667–1727 (2003)

    Article  MathSciNet  Google Scholar 

  8. Ding, W., Jost, J., Li, J., Wang, G.: The differential equation \(\Delta u=8\pi -8\pi he^u\) on a compact Riemann surface. Asian J. Math. 1, 230–248 (1997)

    Article  MathSciNet  Google Scholar 

  9. Ding, W., Jost, J., Li, J., Wang, G.: An analysis of the two-vortex case in the Chern–Siomons Higgs model. Calc. Var. Partial Differ. Equ. 7, 87–97 (1998)

    Article  Google Scholar 

  10. Ding, W., Jost, J., Li, J., Wang, G.: Existence results for mean field equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 16, 653–666 (1999)

    Article  MathSciNet  Google Scholar 

  11. Djadli, Z.: Existence result for the mean field problem on Riemann surfaces of all genuses. Commun. Contemp. Math. 10, 205–220 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ge, H.: Kazdan–Warner equation on graph in the negative case. J. Math. Anal. Appl. 453, 1022–1027 (2017)

    Article  MathSciNet  Google Scholar 

  13. Ge, H., Jiang, W.: Kazdan–Warner equation on infinite graphs. J. Korean Math. Soc. 55, 1091–1101 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Grigor’yan, A., Lin, Y., Yang, Y.: Kazdan–Warner equation on graph. Calc. Var. Partial Differ. Equ. 55, 1–13 (2016)

    Article  MathSciNet  Google Scholar 

  15. Grigor’yan, A., Lin, Y., Yang, Y.: Yamabe type equations on graphs. J. Differ. Equ. 261, 4924–4943 (2016)

    Article  MathSciNet  Google Scholar 

  16. Grigor’yan, A., Lin, Y., Yang, Y.: Existence of positive solutions to some nonlinear equations on locally finite graphs. Sci. China Math. 60, 1311–1324 (2017)

    Article  MathSciNet  Google Scholar 

  17. Han, X., Shao, M., Zhao, L.: Existence and convergence of solutions for nonlinear biharmonic equations on graphs. J. Differ. Equ. 268, 3936–3961 (2020)

    Article  MathSciNet  Google Scholar 

  18. Hou, S.: Multiple solutions of a nonlinear biharmonic equation on graphs, preprint (2021)

  19. Huang, A., Lin, Y., Yau, S.: Existence of solutions to mean field equations on graphs. Commun. Math. Phys. 377, 613–621 (2020)

    Article  MathSciNet  Google Scholar 

  20. Jendoubi, M.: A simple unified approach to some convergence theorems of L. Simon. J. Funct. Anal. 153, 187–202 (1998)

    Article  MathSciNet  Google Scholar 

  21. Kazdan, J., Warner, F.: Curvature functions for compact \(2\)-manifolds. Ann. Math. 99, 14–47 (1974)

    Article  MathSciNet  Google Scholar 

  22. Keller, M., Schwarz, M.: The Kazdan–Warner equation on canonically compactifiable graphs. Calc. Var. Partial Differ. Equ. 57, 1–18 (2018)

    Article  MathSciNet  Google Scholar 

  23. Li, J., Zhu, C.: The convergence of the mean field type flow at a critical case. Calc. Var. Partial Differ. Equ. 58, 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  24. Li, Y.: Harnack type inequality: the method of moving planes. Commun. Math. Phys. 200, 421–444 (1999)

    Article  MathSciNet  Google Scholar 

  25. Li, Y., Shafrir, I.: Blow-up analysis for solutions of \(-\Delta u=Ve^u\) in dimension two. Indiana Univ. Math. J. 43, 1255–1270 (1994)

    Article  MathSciNet  Google Scholar 

  26. Lin, Y., Yang, Y.: Calculus of variations on locally finite graphs, preprint (2021)

  27. Liu, S., Yang, Y.: Multiple solutions of Kazdan–Warner equation on graphs in the negative case. Calc. Var. Partial Differ. Equ. 59, 1–15 (2020)

    Article  MathSciNet  Google Scholar 

  28. Lojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels, Colloques internationaux du C.N.R.S. \(\sharp 117\), Les équations aux dérivées partielles (1963)

  29. Malchiodi, A.: Morse theory and a scalar field equation on compact surfaces. Adv. Differ. Equ. 13, 1109–1129 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Man, S.: On a class of nonlinear Schrödinger equations on finite graphs. Bull. Aust. Math. Soc. 101, 477–487 (2020)

    Article  MathSciNet  Google Scholar 

  31. Simon, L.: Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. Math. 118, 525–571 (1983)

    Article  MathSciNet  Google Scholar 

  32. Struwe, M., Tarantello, G.: On multivortex solutions in Chern–Simons gauge theory. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 1(1), 109–121 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Sun, L., Wang, L.: Brouwer degree for Kazdan–Warner equations on a connected finite graph. arXiv: 2104.09881 (2021)

  34. Sun, L., Zhu, J.: Global existence and convergence of a flow to Kazdan–Warner equation with non-negative prescribed function. Calc. Var. Partial Differ. Equ. 60, 1–26 (2021)

    Article  MathSciNet  Google Scholar 

  35. Tarantello, G.: Multiple condensate solutions for the Chern–Simons–Higgs theory. J. Math. Phys. 37, 3769–3796 (1996)

    Article  MathSciNet  Google Scholar 

  36. Wang, G., et al.: Ordinary Differential Equations. Higher Education Press, Beijing (2006). (in Chinese)

  37. Yang, Y., Zhu, X.: A remark on a result of Ding–Jost–Li–Wang. Proc. Am. Math. Soc. 145, 3953–3959 (2017)

    Article  MathSciNet  Google Scholar 

  38. Zhang, N., Zhao, L.: Convergence of ground state solutions for nonlinear Schrödinger equations on graphs. Sci. China Math. 61, 1481–1494 (2018)

    Article  MathSciNet  Google Scholar 

  39. Zhu, X.: Mean field equations for the equilibrium turbulence and Toda systems on connected finite graphs, preprint (2020)

Download references

Acknowledgements

Yong Lin is partly supported by the National Science Foundation of China (Grant No. 12071245). Yunyan Yang is partly supported by the National Science Foundation of China (Grant No. 11721101) and National Key Research and Development Project SQ2020YFA070080. Both of the two authors are supported by the National Science Foundation of China (Grant No. 11761131002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyan Yang.

Additional information

Communicated by Juergen Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Yang, Y. A heat flow for the mean field equation on a finite graph. Calc. Var. 60, 206 (2021). https://doi.org/10.1007/s00526-021-02086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02086-3

Mathematics Subject Classification

Navigation