Skip to main content
Log in

Existence and non-existence of minimizers for Poincaré–Sobolev inequalities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we study the existence and non-existence of minimizers for a type of (critical) Poincaré–Sobolev inequalities. We show that minimizers do exist for smooth domains in \({\mathord {{\mathbb {R}}}}^d\), an also for some polyhedral domains. On the other hand, we prove the non-existence of minimizers in the rectangular isosceles triangle in \({\mathord {{\mathbb {R}}}}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R.A.: Sobolev Spaces, Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)

    Google Scholar 

  2. Beckner, W.: Estimates on Moser embedding. Potential Anal. 20, 345–359 (2004)

    Article  MathSciNet  Google Scholar 

  3. Benguria, R.D., Vallejos, C., Van Den Bosch, H.: Gagliardo-Nirenberg-Sobolev inequalities for convex domains in \({\mathbb{R}}^d\), accepted for publication in Math. Res. Lett. arXiv:1802.01740

  4. Brezis, H., Lieb, E.: A relation between pointwise convergence and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  5. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math 36, 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  6. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators, with Applications to Quantum Mechanics and Global Geometry. Springer, Berlin Heidelberg (1987)

    Book  Google Scholar 

  7. Dipierro, S.: Concetration of solutions for a singularly perturbed Neumann problem in non-smooth domains Ann. I. H. Poincaré 28, 107–126 (2011)

    Article  Google Scholar 

  8. Del Pino, M., Felmer, P., Wei, J.: On the role of the mean cuvature in some singularly perturbed Neumann problems. SIAM J. Math. Anal. 31, 63–79 (1999)

    Article  MathSciNet  Google Scholar 

  9. Ismagilov, R.: Conditions for the semiboundedness and discreteness of the spectrum for one-dimensional differential equations. Sov. Math. Dokl. 2, 1137–1140 (1961)

    MATH  Google Scholar 

  10. Lieb, E.H., Loss, M.: Analysis, Second Edition, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

    Google Scholar 

  11. Lundholm, D.: Methods of Modern Mathematical Physics: Uncertainty and Exclusion Principles in Quantum Mechanics. Lecture Notes for a Master Class Course at KTH. Spring (2017)

  12. McLeod, K., Serrin, J.: Uniqueness of positive radial solutions of \(\Delta u + f(u)=0\) in \({\mathbb{R}}^n\). Arch. Rat. Mech. Anal. 99, 115–145 (1987)

    Article  Google Scholar 

  13. Morgan, J.D.: Schrödinger operators whose potentials have separated singularities. J. Opt. Theory 1, 109–115 (1979)

    MATH  Google Scholar 

  14. Morgan, J.D., Simon, B.: On the asymptotics of the Born–Oppenheimer curves for large nuclear separation. Int. J. Quantum Chem. 17, 1143–1166 (1980)

    Article  Google Scholar 

  15. Nam, P.T.: Lieb–Thirring inequalities with semiclassical constant and gradient correction. J. Func. Anal. 274, 1739–1746 (2018)

    Article  Google Scholar 

  16. Sigal, I.M.: Geometric methods in the quantum many-body problem. Non-existence of very negative ions. Commun. Math. Phys. 85, 309–324 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

The work of R.B. and C.V. has been supported by Fondecyt (Chile) Project # 116–0856. The work of H. VDB. has been partially supported by CONICYT (Chile) (PCI) Project REDI170157 and partially by Fondecyt (Chile) Project # 318–0059 and by PIA (Chile) AFB-170001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael D. Benguria.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: an associated variational principle

Appendix A: an associated variational principle

In this appendix, we consider the generalized problem

$$\begin{aligned} G_p(\Omega , d) = \inf _{H^1(\Omega )} \frac{\int _\Omega \left| \nabla u\right| ^2 \left( \int _\Omega u^2 \right) ^{p}}{\int _\Omega \left| u-u_\Omega \right| ^{2+2p}}, \quad 0 \le p \le 2/(d-2) . \end{aligned}$$
(15)

While the problem for \(p = 2/d\) was discussed in the main body of the manuscript we study the cases \(p \ne 2/d\) in this appendix.

Theorem A.1

Let \(\Omega \subset {\mathord {{\mathbb {R}}}}^d\) be a bounded domain with locally Lipschitz boundary. For all \(p\in [0,2/d)\) a minimizer for \(G_p(\Omega , d)\) exists. For all \(p \in (2/d, 2/(d-2)]\), \(G_p(\Omega , d) =0\) and no minimizer exists.

Proof

Non-existence for \(p>2/d\). By scaling. Take the origin in the interior of \(\Omega \), \(\phi \in C_c^{\infty }\) with zero average. For sufficiently large \(\lambda >0\), the support of \(u_\lambda \equiv \phi (\lambda \cdot )\) is in \(\Omega \). We compute

$$\begin{aligned} \frac{\int _\Omega \left| \nabla u_\lambda \right| ^2 \left( \int _\Omega u_\lambda ^2 \right) ^{p}}{\int _\Omega \left| u_\lambda \right| ^{2+2p}} = \frac{\lambda ^{2-d}\int _{{\mathord {{\mathbb {R}}}}^d} \left| \nabla \phi \right| ^2 \left( \lambda ^{-d}\int _{{\mathord {{\mathbb {R}}}}^d} \phi ^2 \right) ^{p}}{\lambda ^{-d}\int _{{\mathord {{\mathbb {R}}}}^d} \left| \phi \right| ^{2+2p}} = \lambda ^{2-pd} C_\phi . \end{aligned}$$

This tends to zero when \(\lambda \) increases if \(p>2/d\).

Existence for \(p<2/d\). In this case, we prove existence of a minimizer sequence by showing that minimizing sequences can not concentrate in small sets. As in the proof of Theorem 1.1, if a minimizing sequence has no convergent subsequence, we obtain from Lemma 2.1,

$$\begin{aligned} G_p(\Omega , d) \ge \liminf _{\delta \rightarrow 0} G_p(\Omega , d,\delta ). \end{aligned}$$

Now, we show that

$$\begin{aligned} G_p(\Omega , d,\delta ) \ge C_{p, \Omega } \delta ^{d p -2}, \end{aligned}$$
(16)

with some constant \(C_{p, \Omega }>0\) depending only on p, the dimension d and the Lipschitz constant of \(\Omega \).

First of all, by using Hölder’s inequality for \(f= \left| u\right| ^{2+2p}\), \(g= 1\) in the denominator,

$$\begin{aligned} \inf _{u \in H^1_0(B(0,1)) } \frac{\int \left| \nabla u\right| ^2 \left( \int u^2 \right) ^{p}}{\int \left| u \right| ^{2+2p}}\ge \left( \frac{\mu _1}{\omega _d} \right) ^{\frac{2-pd}{2+d}}G(d)^{\frac{1+p}{1+2/d}}>0, \end{aligned}$$

with \(\mu _1\) the first Dirichlet eigenvalue of B(0, 1) and \(\omega _d\) the volume of B(0, 1).

By scaling, if \(B(s,\delta ) \subset \Omega \),

$$\begin{aligned} \inf _{u \in H^1_0(B(s,\delta )) } \frac{\int _\Omega \left| \nabla u\right| ^2 \left( \int _\Omega u^2 \right) ^{p}}{\int \left| u_\Omega \right| ^{2+2p}}\ge \delta ^{d p -2} \left( \frac{\mu _1}{\omega _d} \right) ^{\frac{2-pd}{2+d}}G(d)^{\frac{1+p}{1+2/d}}. \end{aligned}$$

Otherwise, by replacing \(\delta \) with \(2 \delta \), we may assume that s is on the boundary. In this case we assume that \(\delta \) is small enough such that \(B(s,2\delta ) \cap \partial \Omega \) is the graph of a Lipschitz function over some hyperplane passing through s. We chose coordinates such that this hyperplane coincides with \(x_1 =0\). and write

$$\begin{aligned} (x_1, x_t) \in \Omega \cap B(s,2\delta ) \Leftrightarrow (x_1,x_t) \in B(s, 2 \delta ) \text { and } x_1 > h(x_t), \end{aligned}$$

for some Lipschitz function h. We define f with support in \(B(s, 2 \delta ) \cap {\mathord {{\mathbb {R}}}}^d_+\) by \(f(x_1, x_t) = v(x_1 + h(x_t), x_t)\). As before, this change of variables has unit Jacobian and, by definition of a Lipschitz domain [1, Chapter IV], the distributional derivative of h is bounded by the Lipschitz constant L. Therefore,

$$\begin{aligned} \frac{\int _\Omega \left| \nabla v\right| ^2 \left( \int _\Omega v^2 \right) ^{p}}{\int _\Omega \left| v\right| ^{2+2p}}&\ge \frac{1}{(2+2L)^2} \frac{\int _{{\mathord {{\mathbb {R}}}}^d_+} \left| \nabla f\right| ^2 \left( \int _{{\mathord {{\mathbb {R}}}}^d_+} f^2 \right) ^{p}}{\int _{{\mathord {{\mathbb {R}}}}^d_+} \left| f\right| ^{2+2p}} \\&\ge \frac{1}{(2+2L)^2} 2^{-p} \delta ^{d p -2}\left( \frac{\mu _1}{\omega _d} \right) ^{\frac{2-pd}{2+d}}G(d)^{\frac{1+p}{1+2/d}}. \end{aligned}$$

This proves (16). Thus, if a minimizing sequence does not have a convergent subsequence,

$$\begin{aligned} G_p(\Omega , d) \ge \liminf _{\delta \rightarrow 0} G_p(\Omega , d,\delta ) = + \infty , \end{aligned}$$

which is clearly a contradiction. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benguria, R.D., Vallejos, C. & Van Den Bosch, H. Existence and non-existence of minimizers for Poincaré–Sobolev inequalities. Calc. Var. 59, 1 (2020). https://doi.org/10.1007/s00526-019-1640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1640-y

Mathematics Subject Classification

Navigation