Skip to main content
Log in

The Lamm–Rivière system I: \(L^p\) regularity theory

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Motivated by the heat flow and bubble analysis of biharmonic mappings, we study further regularity issues of the fourth order Lamm–Rivière system

$$\begin{aligned} \Delta ^{2}u=\Delta (V\cdot \nabla u)+\mathrm{div}(w\nabla u)+(\nabla \omega +F)\cdot \nabla u+f \end{aligned}$$

in dimension four, with an inhomogeneous term f which belongs to some natural function space. We obtain optimal higher order regularity and sharp Hölder continuity of weak solutions. Among several applications, we derive weak compactness for sequences of weak solutions with uniformly bounded energy, which generalizes the weak convergence theory of approximate biharmonic mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here \((\Delta u)^T\) denotes the projection of \(\Delta u\) into \(T_uN\).

References

  1. Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765–778 (1975)

    Article  MathSciNet  Google Scholar 

  2. Adams, R.C., Fournier, J.F.: Sobolev spaces. Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam (2003)

  3. Ambrosio, L., Carlotto, A., Massaccesi, A.: Lectures on elliptic partial differential equations. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 18. Edizioni della Normale, Pisa. x+227 pp, (2018)

  4. Angelsberg, G.: A monotonicity formula for stationary biharmonic maps. Math. Z. 252(2), 287–293 (2006)

    Article  MathSciNet  Google Scholar 

  5. Chang, S.-Y.A., Wang, L., Yang, P.C.: A regularity theory of biharmonic maps. Commun. Pure Appl. Math. 52(9), 1113–1137 (1999)

    Article  MathSciNet  Google Scholar 

  6. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  Google Scholar 

  7. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin (2001)

  8. Grafakos, L.: Classical Fourier analysis. Second edition. Graduate Texts in Mathematics, 249. Springer, New York (2008)

  9. Guo, C.-Y., Xiang, C.-L.: Regularity of solutions for a fourth order linear system via conservation law. J. Lond. Math. Soc. 101(3), 907–922 (2020)

    Article  MathSciNet  Google Scholar 

  10. Guo, C.-Y., Xiang, C.-L.: Regularity of weak solutions to higher order elliptic systems in critical dimensions. Tran. Am. Math. Soc. (2021). https://doi.org/10.1090/tran/8326

    Article  MathSciNet  MATH  Google Scholar 

  11. Hélein, F.: Harmonic maps, conservation laws and moving frames. Cambridge Tracts in Mathematics, 150. Cambridge University Press, Cambridge (2002)

  12. Hildebrandt, S.: Nonlinear elliptic systems and harmonic mappings. In: Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, vol 1,2,3 (Beijing, 1980), 481–615, Science Press, Beijing (1982)

  13. Hineman, J., Huang, T., Wang, C.-Y.: Regularity and uniqueness of a class of biharmonic map heat flows. Calc. Var. Partial Differ. Equ. 50(3–4), 491–524 (2014)

    Article  MathSciNet  Google Scholar 

  14. Hornung, P., Moser, R.: Energy identity for intrinsically biharmonic maps in four dimensions. Anal. PDE 5(1), 61–80 (2012)

    Article  MathSciNet  Google Scholar 

  15. Lamm, T.: Heat flow for extrinsic biharmonic maps with small initial energy. Ann. Global Anal. Geom. 26(4), 369–384 (2004)

    Article  MathSciNet  Google Scholar 

  16. Lamm, T.: Biharmonic map heat flow into manifolds of nonpositive curvature. Calc. Var. Partial Differ. Equ. 22, 421–445 (2005)

    Article  MathSciNet  Google Scholar 

  17. Lamm, T., Rivière, T.: Conservation laws for fourth order systems in four dimensions. Commun. Partial Differ. Equ. 33, 245–262 (2008)

    Article  MathSciNet  Google Scholar 

  18. Lamm, T., Sharp, B.: Global estimates and energy identities for elliptic systems with antisymmetric potentials. Commun. Partial Differ. Equ. 41(4), 579–608 (2016)

    Article  MathSciNet  Google Scholar 

  19. Laurain, P., Rivière, T.: Energy quantization for biharmonic maps. Adv. Calc. Var. 6(2), 191–216 (2013)

    Article  MathSciNet  Google Scholar 

  20. Laurain, P., Rivière, T.: Angular energy quantization for linear elliptic systems with antisymmetric potentials and applications. Anal. PDE 7(1), 1–41 (2014)

    Article  MathSciNet  Google Scholar 

  21. Liu, X.-G.: Partial regularity for weak heat flows into a general compact Riemannian manifold. Arch. Ration. Mech. Anal. 168(2), 131–163 (2003)

    Article  MathSciNet  Google Scholar 

  22. Morrey, C.B.: The problem of plateau on a Riemannian manifold. Ann. Math. 2(49), 807–851 (1948)

    Article  MathSciNet  Google Scholar 

  23. Moser, R.: An \(L^p\) regularity theory for harmonic maps. Trans. Am. Math. Soc. 367(1), 1–30 (2015)

    Article  Google Scholar 

  24. O’Neil, R.: Convolution operators and \(L(p,\, q)\) spaces. Duke Math. J. 30, 129–142 (1963)

  25. Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168, 1–22 (2007)

    Article  MathSciNet  Google Scholar 

  26. Rivière, T.: The role of integrability by compensation in conformal geometric analysis. Analytic aspects of problems in Riemannian geometry: elliptic PDEs, solitons and computer imaging, 93–127, Sémin. Congr., 22, Soc. Math. France, Paris (2011)

  27. Rivière, T.: Conformally invariant variational problems. Lecture notes at ETH Zurich. https://people.math.ethz.ch/~riviere/lecture-notes (2012)

  28. Rupflin, M.: An improved uniqueness result for the harmonic map flow in two dimensions. Calc. Var. Partial Differ. Equ. 33(3), 329–341 (2008)

    Article  MathSciNet  Google Scholar 

  29. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. 113(1), 1–24 (1981)

    Article  MathSciNet  Google Scholar 

  30. Sharp, B., Topping, P.: Decay estimates for Rivière’s equation, with applications to regularity and compactness. Trans. Am. Math. Soc. 365(5), 2317–2339 (2013)

  31. Struwe, M.: On the evolution of harmonic maps of Riemannian surfaces. Commun. Math. Helv. 60, 558–581 (1985)

    Article  Google Scholar 

  32. Struwe, M.: On the evolution of Harmonic maps in high dimensions. J. Differ. Geom. 28, 485–502 (1988)

    Article  Google Scholar 

  33. Struwe, M.: Partial regularity for biharmonic maps, revisited. Calc. Var. Partial Differ. Equ. 33, 249–262 (2008)

    Article  MathSciNet  Google Scholar 

  34. Strzelecki, P.: On biharmonic maps and their generalizations. Calc. Var. Partial Differ. Equ. 18(4), 401–432 (2003)

    Article  MathSciNet  Google Scholar 

  35. Strzelecki, P., Zatorska-Goldstein, A.: On a nonlinear fourth order elliptic system with critical growth in first order derivatives. Adv. Calc. Var. 1(2), 205–222 (2008)

    Article  MathSciNet  Google Scholar 

  36. Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. 1, 479–500 (1998)

  37. Wang, C.Y.: Remarks on biharmonic maps into spheres. Calc. Var. Partial Differ. Equ. 21, 221–242 (2004)

    Article  MathSciNet  Google Scholar 

  38. Wang, C.Y.: Biharmonic maps from R4 into a Riemannian manifold. Math. Z. 247, 65–87 (2004)

    Article  MathSciNet  Google Scholar 

  39. Wang, C.Y.: Stationary biharmonic maps from Rm into a Riemannian manifold. Commun. Pure Appl. Math. 57, 419–444 (2004)

    Article  Google Scholar 

  40. Wang, C.Y.: Well-posedness for the heat flow of biharmonic maps with rough initial data. J. Geom. Anal. 22(1), 223–243 (2012)

    Article  MathSciNet  Google Scholar 

  41. Wang, C.Y., Zheng, S.Z.: Energy identity of approximate biharmonic maps to Riemannian manifolds and its application. J. Funct. Anal. 263(4), 960–987 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Xiao Zhong for many useful discussions during the preparation of this work. We would also like to thank the anonymous referees for many useful comments and suggestions that improves the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Lin Xiang.

Additional information

Communicated by F. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C.-Y. Guo was supported by Swiss National Science Foundation Grant 175985 and the Qilu funding of Shandong University (No. 62550089963197). The corresponding author C.-L. Xiang is financially supported by the National Natural Science Foundation of China (No. 11701045). G.-F. Zheng is supported by the National Natural Science Foundation of China (No. 11571131).

Appendices

Appendix A: A note on Calderón–Zygmund estimate

The aim of this section is to prove that the Calderón–Zygmund estimate is locally uniform with respect to p.

Proposition A.1

For each \(\delta \in (0,\frac{1}{2})\), there exists \(C=C_{\delta ,n}\) such that for any \(p\in [1+\delta ,\frac{1+\delta }{\delta }]\), the following Calderón–Zygmund estimate holds

$$\begin{aligned} \Vert \nabla ^{2}u\Vert _{p,B_{{1}/{2}}}\le C_{\delta ,n}\left( \Vert \Delta u\Vert _{p,B_{1}}+\Vert u\Vert _{p,B_{1}}\right) \end{aligned}$$
(A.1)

for all \(u\in W^{2,p}(B_1)\).

Proof

We first prove a global version. That is, for each \(\delta \in (0,\frac{1}{2})\), there exists \(C=C_{\delta ,n}\) such that for any \(p\in (1+\delta ,\frac{1+\delta }{\delta })\),

$$\begin{aligned} \Vert \nabla ^{2}u\Vert _{L^p({\mathbb {R}}^n)}\le C_{\delta ,n}\left( \Vert \Delta u\Vert _{L^p({\mathbb {R}}^n)}+\Vert u\Vert _{L^p({\mathbb {R}}^n)}\right) \end{aligned}$$
(A.2)

for all \(u\in W^{2,p}({\mathbb {R}}^n)\).

By the well-known estimates for Calderón–Zygmund operators (see e.g. [8]), we have

$$\begin{aligned} \Vert \nabla ^{2}u\Vert _{L^{1,\infty }({\mathbb {R}}^{n})}\le C_{1,n}\Vert \Delta u\Vert _{L^{1}({\mathbb {R}}^n)} \end{aligned}$$

and

$$\begin{aligned} \Vert \nabla ^{2}u\Vert _{L^2({\mathbb {R}}^n)}\le C_{2,n}\Vert \Delta u\Vert _{L^2({\mathbb {R}}^n)}. \end{aligned}$$

By [7, Corollary 9.10], we can take \(C_{2,n}=1\). For \(1<p<2\) and \(u\in W^{2,p}({\mathbb {R}}^{n})\), the Marcinkiewicz interpolation theorem (see e.g. [7, Theorem 9.8] or [8, Theorem 1.3.2]) implies

$$\begin{aligned} \Vert \nabla ^{2}u\Vert _{L^p({\mathbb {R}}^n)}\le C_{p,n}\Vert \Delta u\Vert _{L^p({\mathbb {R}}^n)}, \end{aligned}$$

where

$$\begin{aligned} C_{p,n}=2\left( \frac{p}{(p-1)(2-p)}\right) ^{1/p}\left( C_{1,n}\right) ^{\theta } \left( C_{2,n}\right) ^{1-\theta } \end{aligned}$$

and \(\theta =\frac{2}{p}-1\). Thus, for any given \(\delta \in (0,\frac{1}{2})\) and \(1<p\le 1+\delta \), we have \(2-p>1/2\) and \(\theta \in (\frac{1}{3},1)\). Consequently, we infer that

$$\begin{aligned} C_{p,n}\le \frac{C(n)}{p-1}. \end{aligned}$$

Fix \(\delta \in (0,1/2)\). We apply the Riesz-Thorin interpolation theorem (see e.g. [8, Theorem 1.3.4] with \(p_{0}=q_{0}=1+\delta \), \(p_{1}=q_{1}=2\)), to obtain, for any \(1+\delta \le p\le 2\),

$$\begin{aligned} \Vert \nabla ^{2}u\Vert _{L^p({\mathbb {R}}^n)}\le C_{1+\delta ,n}^{\theta }C_{2,n}^{1-\theta }\Vert \Delta u\Vert _{L^p({\mathbb {R}}^n)}\le C_{\delta ,n}\Vert \Delta u\Vert _{L^p({\mathbb {R}}^n)}, \end{aligned}$$

where in the last inequality we used the fact that \(\theta =\frac{2(p-1-\delta )}{p(1-\delta )}\le \frac{2}{1+\delta }\).

For \(2\le p\le \frac{1}{1-\frac{1}{1+\delta }}=\frac{1+\delta }{\delta }\), we conclude by duality that

$$\begin{aligned} \Vert \nabla ^{2}u\Vert _{L^p({\mathbb {R}}^n)}\le C_{\delta ,n}\Vert \Delta u\Vert _{L^p({\mathbb {R}}^n)} \end{aligned}$$

holds for all \(u\in W^{2,p}({\mathbb {R}}^{n})\). This proves (A.2).

Now we can prove the local Calderón–Zygmund estimate (A.1).

For any given \(u\in W^{2,p}(B_{1})\), we extend u to \({\mathbb {R}}^n\) as zero outside \(B_1\) and choose \(\eta \in C_{0}^{\infty }(B_{1})\) such that \(\eta \equiv 1\) on \(B_{\frac{1}{2}}\), \(0\le \eta \le 1\) on \({\mathbb {R}}^n\) and \(\max \{\Vert \nabla \eta \Vert _{L^\infty ({\mathbb {R}}^n)}, \Vert \Delta \eta \Vert _{L^\infty ({\mathbb {R}}^n)} \}\le C_n\). Then for any \(p\in [1+\delta ,\frac{1+\delta }{\delta }]\), we apply the previous global estimate to find a constant \(C_{\delta ,n}>0\) such that

$$\begin{aligned} \Vert \nabla ^{2}(\eta u)\Vert _{L^p({\mathbb {R}}^n)}\le C_{\delta ,n}\Vert \Delta (\eta u)\Vert _{L^p({\mathbb {R}}^n)}. \end{aligned}$$

As a consequence, we have

$$\begin{aligned} \begin{aligned} \Vert \nabla ^{2}u\Vert _{p,B_{1/2}}&\le C_{\delta ,n}\left( \Vert \eta \Delta u\Vert _{L^p({\mathbb {R}}^n)}+2\Vert \nabla \eta \cdot \nabla u\Vert _{L^p({\mathbb {R}}^n)}+\Vert \Delta \eta u\Vert _{L^p({\mathbb {R}}^n)}\right) \\&\le 2C_{\delta ,n}C_n\left( \Vert \Delta u\Vert _{p,B_{1}}+\Vert \nabla u\Vert _{p,B_{1}}+\Vert u\Vert _{p,B_{1}}\right) . \end{aligned} \end{aligned}$$
(A.3)

On the other hand, by the interpolation inequality for Sobolev spaces (see e.g. [7, Theorem 7.28]), there exists \(C=C(n)\) such that for any \(\epsilon >0\),

$$\begin{aligned} \Vert \nabla u\Vert _{p,B_{1}}\le \epsilon \Vert \Delta u\Vert _{p,B_{1}}+\frac{C(n)}{\epsilon }\Vert u\Vert _{p,B_{1}}. \end{aligned}$$

Substituting the above inequality with \(\epsilon =1\) into (A.3), we finally obtain

$$\begin{aligned} \Vert \nabla ^{2}u\Vert _{p,B_{1/2}}\le C_{\delta ,n}\left( \Vert \Delta u\Vert _{p,B_{1}}+\Vert u\Vert _{p,B_{1}}\right) . \end{aligned}$$

The proof is complete. \(\square \)

Appendix B: A slightly improved Calderón–Zygmund estimate

In this section, we prove the following proposition which states a slightly improved Calderón–Zygmund estimate. It seems very possible that this proposition was already established in some literature. As we did not find a precise reference at hand, we present a detailed proof here for the reader’s convenience.

Proposition B.1

For each \(\delta \in (0,\frac{1}{2})\), there exists \(C=C_{\delta ,n}\) such that for any \(p\in [1+\delta ,n-\delta ]\), the following Calderón–Zygmund estimate holds

$$\begin{aligned} \Vert \nabla ^{2}u\Vert _{p,B_{1/2}}\le C_{\delta ,n}\left( \Vert \Delta u\Vert _{p,B_{1}}+\Vert u\Vert _{1,B_{1}}\right) \end{aligned}$$
(B.1)

for all \(u\in W^{2,p}(B_1)\).

In our case, \(n=4\) and \(1<p<4/3\), so \(1<p/(2-p)<\gamma<2p/(2-p)<4\). Thus, there exists a constant C independent of \(\gamma \in (\frac{p}{2-p},\frac{2p}{2-p})\) such that

$$\begin{aligned} \Vert \nabla ^{2}u\Vert _{\gamma ,B_{1/2}}\le C\left( \Vert \Delta u\Vert _{\gamma ,B_{1}}+\Vert u\Vert _{1,B_{1}}\right) . \end{aligned}$$
(B.2)

Proof

We first recall the following results from [2, Chapter 5].

  • P1. There exists \(C_{n}>0\) depending only on n such that there exists an extension operator \(E:W^{1,p}(B_{1})\rightarrow W_{0}^{1,p}(B_{2})\) for all \(1\le p<\infty \) satisfying

    $$\begin{aligned} \Vert Eu\Vert _{W^{1,p}({\mathbb {R}}^n)}\le C_{n}\Vert u\Vert _{W^{1,p}(B_1)}. \end{aligned}$$
  • P2. Let \(1<p<n\) and \(u\in W^{1,p}(B_{1})\) for \(B_{1}\subset {\mathbb {R}}^{n}\). Then

    $$\begin{aligned} \Vert u\Vert _{p}\le \Vert u\Vert _{1}^{\theta }\Vert u\Vert _{p^{*}}^{1-\theta }, \end{aligned}$$

    where \(\frac{1}{p}=1+(1-\theta )\big (\frac{1}{p^*}-1\big )\) or equivalently \(\theta =\frac{p}{np-n+p}\).

By the Sobolev embedding theorem and property P1, we have

$$\begin{aligned} \Vert u\Vert _{p^{*},B_{1}}\le \Vert Eu\Vert _{p^{*},B_{2}}\le C_{p}\Vert \nabla (Eu)\Vert _{p,B_{2}}\le C_{p}C_{n}(\Vert u\Vert _{p,B_{1}}+\Vert \nabla u\Vert _{p,B_{1}}). \end{aligned}$$

Here \(C_{p}\) is the best Sobolev constant satisfying

$$\begin{aligned} C_{p}\le \frac{n-1}{\sqrt{n}}\frac{p}{n-p}. \end{aligned}$$

Thus,

$$\begin{aligned} \Vert u\Vert _{p, B_1}\le \Vert u\Vert _{1, B_1}^{\theta }\left( C_{p}C_{n}(\Vert u\Vert _{p,B_{1}}+\Vert \nabla u\Vert _{p,B_{1}})\right) ^{1-\theta }. \end{aligned}$$

Next we apply the following interpolation theorem (see e.g. [2, Theorem 5.2]): there exists \(C_{n}>0\) such that for all \(1\le p<\infty \) and \(\epsilon >0\),

$$\begin{aligned} \Vert \nabla u\Vert _{p,B_{1}}\le \epsilon \Vert \Delta u\Vert _{p,B_{1}}+\frac{C(n)}{\epsilon }\Vert u\Vert _{p,B_{1}}, \end{aligned}$$

Taking \(\epsilon =1\), we obtain

$$\begin{aligned} \Vert u\Vert _{p, B_1}\le \Vert u\Vert _{1, B_1}^{\theta }\left( C_{p}C_{n}(\Vert u\Vert _{p,B_{1}}+\Vert \Delta u\Vert _{p,B_{1}})\right) ^{1-\theta }. \end{aligned}$$

Since \(a^{\theta }b^{1-\theta }\le \epsilon ^{-\frac{1-\theta }{\theta }}a+\epsilon b\), we have

$$\begin{aligned} \Vert u\Vert _{p, B_1}\le \epsilon ^{-\frac{1-\theta }{\theta }}\Vert u\Vert _{1, B_1}+\epsilon C_{p}C_{n}(\Vert u\Vert _{p,B_{1}}+\Vert \Delta u\Vert _{p,B_{1}}). \end{aligned}$$

Take \(\epsilon =1/(2C_{p}C_{n})\) yields

$$\begin{aligned} \Vert u\Vert _{p}\le (2C_{p}C_{n})^{\frac{1-\theta }{\theta }}\Vert u\Vert _{1}+\frac{1}{2}\Vert \Delta u\Vert _{p,B_{1}}. \end{aligned}$$

Note that \(1/n\le \theta \le 1\) for all \(1<p<n\), and \(\theta \rightarrow 1\) as \(p\rightarrow 1\), \(\theta \rightarrow 1/n\) as \(p\rightarrow n\). Thus, \(0\le 1-\theta \le \frac{1-\theta }{\theta }\le n(1-\theta )\le n\) and so

$$\begin{aligned} (2C_{p}C_{n})^{\frac{1-\theta }{\theta }}\le 2^{n}C_{n}^{n}\left( \frac{p}{n-p} \right) ^{\frac{1-\theta }{\theta }} \end{aligned}$$

is locally uniformly bounded for \(p\in [1,n)\).

Finally, combining the above estimate with Proposition A.1, we obtain

$$\begin{aligned} \Vert \nabla ^{2}u\Vert _{p,B_{1/2}}\le C_{\delta ,n}C_{p}\left( \Vert \Delta u\Vert _{p,B_{1}}+\Vert u\Vert _{1,B_{1}}\right) \end{aligned}$$

with a constant \(C_{\delta ,n}C_{p}\) uniformly bounded by \(C(\delta ,n)\) for all \(p\in [1+\delta ,n-\delta ]\). \(\square \)

Appendix C: A regularity result

The following lemma is a special case of Theorem 3.31 of [3]. We sketch the proof for readers’ convenience.

Lemma C.1

Let \({\varvec{f}}\in L^{p}(B_{1})\) and \(v\in W^{1,p}(B_{1})\) for some \(1<p<2\). Then there exists a unique \(h\in W^{1,p}(B_{1})\) solving equation

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta h=\mathrm{div}\,{\varvec{f}} &{} \text {in }B_{1},\\ h=v &{} \text {on }\partial B_{1}. \end{array}\right. } \end{aligned}$$
(C.1)

Moreover, there exists a constant \(C=C(n,p)>0\), such that

$$\begin{aligned} \Vert h\Vert _{W^{1,p}(B_{1})}\le C\left( \Vert {\varvec{f}}\Vert _{L^{p}(B_{1})}+\Vert v\Vert _{W^{1,p}(B_{1})}\right) . \end{aligned}$$

Proof

First assume \({\varvec{f}},v\in C^{2}({\bar{B}}_{1})\) such that there exists a solution h of equation (C.1). Let \({\bar{h}}=h-v\in W_{0}^{1,p}(B_{1})\). Then

$$\begin{aligned} -\Delta {\bar{h}}=\mathrm{div}\,({\varvec{f}}+\nabla v) \end{aligned}$$

in \(B_{1}\). Put \(F=|\nabla {\bar{h}}|^{p-2}\nabla {\bar{h}}\in L^{p^{\prime }}(B_{1})\). Note \(p^{\prime }>2\). Hodge decomposition gives a function \(\varphi \in W_{0}^{1,p^{\prime }}(B_{1})\) and a function \(G\in L^{p^{\prime }}(B_{1})\) satisfying \(\mathrm{div}\,G=0\) in \(B_{1}\), and

$$\begin{aligned} \Vert \nabla \varphi \Vert _{L^{p^{\prime }}(B_{1})}+\Vert G\Vert _{L^{p^{\prime }}(B_{1})}\le C(n,p)\Vert F\Vert _{L^{p^{\prime }}(B_{1})}=C(n,p)\Vert \nabla {\bar{h}}\Vert _{L^{p^{\prime }}(B_{1})}^{p-1}. \end{aligned}$$

Thus, using this Hodge decomposition and Hölder’s inequality, we obtain

$$\begin{aligned} \begin{aligned} \Vert \nabla {\bar{h}}\Vert _{L^{p}(B_{1})}^{p}&=\int _{B_{1}}\nabla {\bar{h}}\cdot F\\&=\int _{B_{1}}\nabla {\bar{h}}\cdot \nabla \varphi =-\int _{B_{1}}\left( {\varvec{f}}+\nabla v\right) \cdot \nabla \varphi \\&\le \left( \Vert {\varvec{f}}\Vert _{L^{p}(B_{1})}+\Vert \nabla v\Vert _{L^{p}(B_{1})}\right) \Vert \nabla \varphi \Vert _{L^{p^{\prime }}(B_{1})}\\&\le C(n,p)\left( \Vert {\varvec{f}}\Vert _{L^{p}(B_{1})}+\Vert \nabla v\Vert _{L^{p}(B_{1})}\right) \Vert \nabla {\bar{h}}\Vert _{L^{p^{\prime }}(B_{1})}^{p-1}. \end{aligned} \end{aligned}$$

This implies \(\Vert \nabla {\bar{h}}\Vert _{L^{p}(B_{1})}\le C(n,p)\left( \Vert {\varvec{f}}\Vert _{L^{p}(B_{1})}+\Vert \nabla v\Vert _{L^{p}(B_{1})}\right) \), which in turn gives

$$\begin{aligned} \Vert \nabla h\Vert _{L^{p}(B_{1})}\le C\left( \Vert {\varvec{f}}\Vert _{L^{p}(B_{1})}+\Vert \nabla v\Vert _{L^{p}(B_{1})}\right) \end{aligned}$$
(C.2)

for some \(C>0\) depending only on n and p.

Then, using Poincaré’s inequality, we obtain

$$\begin{aligned} \Vert h\Vert _{L^{p}(B_{1})}\le \Vert h-v\Vert _{L^{p}(B_{1})}+\Vert v\Vert _{L^{p}(B_{1})}\le C_{n,p}\Vert \nabla h-\nabla v\Vert _{L^{p}(B_{1})}+\Vert v\Vert _{L^{p}(B_{1})}. \end{aligned}$$

Combining the estimate (C.2) together with the above estimate yields

$$\begin{aligned} \Vert h\Vert _{L^{p}(B_{1})}\le C\left( \Vert {\varvec{f}}\Vert _{L^{p}(B_{1})}+\Vert v\Vert _{W^{1,p}(B_{1})}\right) . \end{aligned}$$

This completes the proof in the case \({\varvec{f}},v\in C^{2}({\bar{B}}_{1})\).

The general case follows from a standard approximation argument. We omit the details. The uniqueness proof is also standard. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, CY., Xiang, CL. & Zheng, GF. The Lamm–Rivière system I: \(L^p\) regularity theory. Calc. Var. 60, 213 (2021). https://doi.org/10.1007/s00526-021-02059-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02059-6

Mathematics Subject Classification

Navigation