Skip to main content
Log in

Stationary Navier–Stokes equations under inhomogeneous boundary conditions in 3D exterior domains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In an exterior domain \(\Omega \subset \mathbb {R}^3\) having compact boundary \(\partial \Omega = \bigcup _{j=1}^L\Gamma _j\) with L disjoint smooth closed surfaces \(\Gamma _1, \ldots , \Gamma _L\), we consider the problem on the existence of weak solutions \(\varvec{v}\) of the stationary Navier–Stokes equations in \(\Omega \) satisfying \(\varvec{v}|_{\Gamma _j}= \varvec{\beta _j}\), \(j = 1, \ldots , L\) and \(\varvec{v}\rightarrow \varvec{0}\) as \(|x| \rightarrow \infty \), where \(\varvec{\beta }_j\) are the given data on the boundary component \(\Gamma _j\), \(j=1, \ldots , L\). Our first task is to find an appropriate solenoidal extension \(\varvec{b}\) into \(\Omega \), i.e., \(\mathrm{div}\,\varvec{b}=0\) satisfying \(\varvec{b}|_{\Gamma _j} = \varvec{\beta }_j\), \(j =1, \ldots , L\). By our previous result [8] on the \(L^r\)-Helmholtz-Weyl decomposition, \(\varvec{b}\) is expressed as \(\varvec{b} = \varvec{h} + \mathrm{rot}\, \varvec{w}\), where \(\varvec{h}\) is a harmonic vector field depending only on the flux \(\int _{\Gamma _j}\varvec{\beta }_j\cdot \varvec{\nu }dS\) through \(\Gamma _j\), \(j =1, \ldots , L\). Next, we prove that if \(\varvec{h}\) is small in \(L^3(\Omega )\), then there exists a weak solution \(\varvec{v}\) with \(\nabla \varvec{v} \in L^2(\Omega )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogovskii, M.E.: Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math. Dokl. 20, 1094–1098 (1979)

    Google Scholar 

  2. Borchers, W., Sohr, H.: On the equations \({{\rm rot}}\, v = g\) and \({{\rm div}\,} u = f\) with zero boundary conditions. Hokkaido Math. J. 19, 67–87 (1990)

    Article  MathSciNet  Google Scholar 

  3. Farwig, R., Kozono, H., Yanagisawa, T.: Leray’s inequality in general multi-connected domains in \(\mathbb{R}^n\). Math. Ann. 354, 137–145 (2012)

    Article  MathSciNet  Google Scholar 

  4. Fujita, H.: On the existence and regularity of the steady-state solutions of the Navier–Stokes equations. J. Fac. Sci. Univ. Tokyo Sec. I. A 9, 59–102 (1960)

    MATH  Google Scholar 

  5. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Springer, New York-Berlin-Heidelberg-Tokyo, Steady-state Problems second edition (2011)

  6. Giga, Y., Sohr, H.: On the Stokes equations in exterior domains. J. Fac. Sci. Univ. Tokyo Sect. I. A. Math. 36, 103–130 (1989)

    Google Scholar 

  7. Hieber, M., Kozono, H., Seyfert, A., Shimizu, S., Yanagisawa, T.: A Characterization of harmonic \(L^r\)-vector fields in three dimensional exterior domains. Preprint

  8. Hieber, M., Kozono, H., Seyfert, A., Shimizu, S., Yanagisawa, T.: \(L^r\)-Helmholtz-Weyl decomposition for three dimensional exterior domains. J. Funct. Anal. 281(8), 109144 (2021)

    Article  Google Scholar 

  9. Korobkov, M., Pileckas, K., Russo, R.: Solution of Leray’s problem for stationary Navier–Stokes equations in plane and axially symmetric spatial domains. Ann. Math. 2(181), 769–807 (2015)

    Article  MathSciNet  Google Scholar 

  10. Kozono, H., Sohr, H.: On a new class of generalized solutions for the Stokes equations in exterior domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(19), 155–181 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Kozono, H., Sohr, H., Yamazaki, M.: Representation formula, net force and energy relation to the stationary Navier–Stokes equations in 3-dimensional exterior domains. Kyushu J. Math. 51, 239–260 (1997)

    Article  MathSciNet  Google Scholar 

  12. Kozono, H., Yanagisawa, T.: \(L^{r}\)-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains. Indiana Univ. Math. J. 58, 1853–1920 (2009)

    Article  MathSciNet  Google Scholar 

  13. Kozono, H., Yanagisawa, T.: Leray’s problem on the stationary Navier–Stokes equations with inhomogeneous boundary data. Math. Z. 262, 27–39 (2009)

    Article  MathSciNet  Google Scholar 

  14. Ladyzehnskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, London (1969)

    Google Scholar 

  15. Leray, J.: Etude de diverses équations intégrals non linés et de quelques probléms que pose lH́ydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MATH  Google Scholar 

  16. Neustupa, J.: A new approach to the existence of weak solutions of the steady Navier–Stokes system with inhomogeneous boundary data in domains with noncompact boundaries. Arch. Ration. Mech. Anal. 198, 331–348 (2010)

    Article  MathSciNet  Google Scholar 

  17. Simader, C.G.: The weak Dirichlet and Neumann problem for the Laplacian in \(L^q\) for bounded and exterior domains. Nonlinear Analysis, Function Spaces and Appplications, Kubec, M., Kufner. A., Opic, B., Rákosnik (ed.) Vol.4, Teubner-Text vol.199, 180–223 Teubner- Leibzig (1990)

  18. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis North-Holland Pub. Co., Amsterdam (1979)

    MATH  Google Scholar 

Download references

Acknowledgements

The research of the project was partially supported by JSPS Fostering Joint Research Program (B)-18KK0072. The research of H. Kozono was partially supported by JSPS Grant-in-Aid for Scientific Research (S) 16H06339. The research of S. Shimizu was partially supported by JSPS Grant-in-Aid for Scientific Research (B) -16H03945, MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Kozono.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by F.-H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hieber, M., Kozono, H., Seyfert, A. et al. Stationary Navier–Stokes equations under inhomogeneous boundary conditions in 3D exterior domains. Calc. Var. 60, 180 (2021). https://doi.org/10.1007/s00526-021-02050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02050-1

Mathematics Subject Classification

Navigation