Skip to main content
Log in

Semiclassical states for nonlinear Dirac equations with singular potentials

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the following nonlinear Dirac equation

$$\begin{aligned} -i\varepsilon \alpha \cdot \nabla u+a\beta u+V(x)u=K(x)|u|^{p-2}u,\ \ \mathrm{for}\ u\in H^1({\mathbb {R}}^3, {\mathbb {C}}^4), \end{aligned}$$

where \(p\in (2,3)\), \(a > 0\) is a constant, \(\alpha =(\alpha _1,\alpha _2,\alpha _3)\), \(\alpha _1,\alpha _2,\alpha _3\) and \(\beta \) are \(4\times 4\) Pauli–Dirac matrices. Our investigation focuses on the case in which V(x) may attain \(\pm a\) at somewhere or at infinity and K(x) may approach \(\pm \infty \) as x accumulating at some points and as \(|x|\rightarrow \infty \). This is a case with the potentials being singular, which has not been studied before as all the works in the literature require \(\limsup _{|x|\rightarrow \infty } |V(x)|< a\) and \(K\in L^\infty ({\mathbb {R}}^3,{\mathbb {R}}^+)\). Under some mild assumptions on V and K, for \(\varepsilon >0\) small, we construct localized bound state solutions which concentrate around the singular set of K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Malchiodi, A., Ni, W.-M.: Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres I. Commun. Math. Phys. 235(3), 427–466 (2003)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Felli, V., Malchiodi, A.: Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. 7(1), 117–144 (2005)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Malchiodi, A., Ruiz, D.: Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Anal. Math. 98, 317–348 (2006)

    Article  MathSciNet  Google Scholar 

  4. Ambrosetti, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with vanishing and decaying potentials. Differ. Integral Equ. 18(12), 1321–1332 (2005)

    MATH  Google Scholar 

  5. Bae, S., Byeon, J.: Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Commun. Pure Appl. Anal. 12(2), 831–850 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Ding, Y.: Solutions of nonlinear Dirac equations. J. Differ. Equ. 226(1), 210–249 (2006)

    Article  MathSciNet  Google Scholar 

  7. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165(4), 295–316 (2002)

    Article  MathSciNet  Google Scholar 

  8. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations II. Calc. Var. Partial Differ. Equ. 18(2), 207–219 (2003)

    Article  Google Scholar 

  9. Byeon, J., Wang, Z.-Q.: Standing waves for nonlinear Schrödinger equations with singular potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 943–958 (2009)

    Article  MathSciNet  Google Scholar 

  10. Chen, S., Wang, Z.-Q.: Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 56(1), 1 (2017)

    Article  Google Scholar 

  11. Cosmo, J.D., Schaftingen, J.V.: Stationary solutions of the nonlinear Schrödinger equation with fast-decay potentials concentrating around local maxima. Calc. Var. Partial Differ. Equ. 47(1–2), 243–271 (2013)

    Article  Google Scholar 

  12. Del Pino, M., Felmer, P.: Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149(1), 245–265 (1997)

    Article  MathSciNet  Google Scholar 

  13. Del Pino, M., Felmer, P.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15(2), 127–149 (1998)

    Article  MathSciNet  Google Scholar 

  14. Del Pino, M., Kowalczyk, M., Wei, J.C.: Concentration on curves for nonlinear Schrödinger equations. Commun. Pure Appl. Math 60(1), 113–146 (2007)

    Article  Google Scholar 

  15. Ding, Y.: Variational methods for strongly indefinite problems. Interdiscip. Math. Sci., vol.7. World Scientific Publishing, Singapore (2007)

  16. Ding, Y.: Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation. J. Differ. Equ. 249(5), 1015–1034 (2010)

    Article  MathSciNet  Google Scholar 

  17. Ding, Y., Lee, C., Ruf, B.: On semiclassical states of a nonlinear Dirac equation. Proc. R. Soc. Edinb. Sect. A 143(4), 765–790 (2013)

    Article  MathSciNet  Google Scholar 

  18. Ding, Y., Liu, X.: Semi-classical limits of ground states of a nonlinear Dirac equation. J. Differ. Equ. 252(9), 4962–4987 (2012)

    Article  MathSciNet  Google Scholar 

  19. Ding, Y., Liu, X.: On semiclassical ground states of a nonlinear Dirac equation. Rev. Math. Phys., 24(10), 1250029, 25 pp (2012)

  20. Ding, Y., Ruf, B.: Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities. SIAM J. Math. Anal. 44(6), 3755–3785 (2012)

    Article  MathSciNet  Google Scholar 

  21. Ding, Y., Wei, J.: Stationary states of nonlinear Dirac equations with general potentials. J. Math. Phys. 20(8), 1007–1032 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Ding, Y., Xu, T.: Localized concentration of semi-classical states for nonlinear dirac equations. Arch. Ration. Mech. Anal. 216(2), 415–447 (2015)

    Article  MathSciNet  Google Scholar 

  23. Esteban, M.J., Lewin, M., Séré, E.: Variational methods in relativistic quantum mechanics. Bull. Am. Math. Soc. (N.S.) 45(4), 535–593 (2008)

  24. Esteban, M.J., Séré, E.: Stationary states of the nonlinear Dirac equation: a variational approach. Commun. Math. Phys. 171(2), 323–350 (1995)

    Article  MathSciNet  Google Scholar 

  25. Figueiredo, G.M., Pimenta, M.T.O.: Existence of ground state solutions to Dirac equations with vanishing potentials at infinity. J. Differ. Equ. 262(1), 486–505 (2017)

    Article  MathSciNet  Google Scholar 

  26. Finkelstein, R., LeLevier, R., Ruderman, M.: Nonlinear spinor fields. Phys. Rev. 83(2), 326–332 (1951)

    Article  MathSciNet  Google Scholar 

  27. Finkelstein, R., Fronsdal, C., Kaus, P.: Nonlinear spinor field. Phys. Rev. 103(5), 1571–1579 (1956)

    Article  Google Scholar 

  28. Jeanjean, L., Tanaka, K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Partial Differ. Equ. 21(3), 287–318 (2004)

    Article  MathSciNet  Google Scholar 

  29. Kang, X., Wei, J.C.: On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differ. Equ. 5(7–9), 899–928 (2000)

    MATH  Google Scholar 

  30. Merle, F.: Existence of stationary states for nonlinear Dirac equations. J. Differ. Equ. 74(1), 50–68 (1988)

    Article  MathSciNet  Google Scholar 

  31. Moroz, V., Van Schaftingen, J.: Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials. Calc. Var. Partial Differ. Equ. 37(1–2), 1–27 (2010)

    Article  Google Scholar 

  32. Oh, Y.G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class \((V)_a\). Commun. Partial Differ. Equ. 2(12), 1499–1519 (1988)

    Article  Google Scholar 

  33. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–292 (1992)

    Article  MathSciNet  Google Scholar 

  34. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153(2), 229–244 (1993)

    Article  Google Scholar 

  35. Wang, Z.-Q., Zhang, X.: An infinite sequence of localized semiclassical bound states for nonlinear Dirac equations. Calc. Var. Partial Differ. Equ., 57(2), Art. 56, 30 pp (2018)

  36. Zhang, X., Wang, Z.-Q.: Semiclassical states of nonlinear Dirac equations with degenerate potential. Annali di Matematica (2019). https://doi.org/10.1007/s10231-019-00849-6

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the referee for their valuable comments. This work is supported by NSFC (11771324, 11831009, 11901582).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Additional information

Communicated by M. del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZQ., Zhang, X. Semiclassical states for nonlinear Dirac equations with singular potentials. Calc. Var. 60, 161 (2021). https://doi.org/10.1007/s00526-021-02035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02035-0

Mathematics Subject Classification

Navigation