Skip to main content
Log in

On the Dirichlet problem for a class of fully nonlinear elliptic equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Based on the asymptotic property of the level hypersurfaces of f, we show that the solvability of Dirichlet problem for the fully nonlinear elliptic equation with \(\varGamma =\varGamma _n\) is closely related to the existence of a \(\mathcal {C}\)-subsolution introduced by Székelyhidi (J Differ Geom 109: 337–378, 2018) of a rescaled equation. For the complex Monge–Ampère equation and complex Hessian equations the gradient estimate established in previous works (Błocki, Math Ann 344: 317–327, 2009; Hanani, J Funct Anal 137: 49–75, 1996; Guan and Li, Adv Math 225: 1185–1223, 2010; Zhang, Int Math Res Not 2010: 3814–3836, 2010) also follows as a consequence of our argument. Also, the existence and regularity of admissible solutions to Dirichlet problem for fully nonlinear elliptic equations on compact Kähler manifolds of nonnegative orthogonal bisectional curvature are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Assumption (28) can be further removed. The method follows an idea of new version of [13]. See (44) below for more detail.

  2. Following an idea of new version of [13], one can improve the part a) in (43) as follows:

    $$\begin{aligned} \begin{aligned} \sum _{i=1}^n f_i |\lambda _i| \le \epsilon \sum _{i\ne r} f_i\lambda _i^2 +\left( \sup _{{\bar{M}}}|{\underline{\lambda }}|+\frac{1}{\epsilon }\right) \sum _{i=1}^n f_i +\sum _{i=1}^n f_{i}({\underline{\lambda }}_i-\lambda _i), \text{ if } \lambda _r\le 0. \end{aligned} \end{aligned}$$
    (45)

    As a result, we can remove assumption (28) in Theorem 7 and then improve existence results.

References

  1. Aubin, T.: Équations du type Monge–Ampère sur les variétés Kähleriennes compactes. (French) Bull. Sci. Math. 102, 63–95 (1978)

  2. Błocki, Z.: A gradient estimate in the Calabi–Yau theorem. Math. Ann. 344, 317–327 (2009)

    Article  MathSciNet  Google Scholar 

  3. Caffarelli, L.A., Kohn, J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformaly elliptic, equations. Commun. Pure Appl. Math. 38, 209–252 (1985)

  4. Caffarelli, L.A., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations III: functions of eigenvalues of the Hessians. Acta Math. 155, 261–301 (1985)

    Article  MathSciNet  Google Scholar 

  5. Chen, X.-X.: The space of Kähler metrics. J. Differ. Geom. 56, 189–234 (2000)

    Article  Google Scholar 

  6. Dinew, S., Kołodziej, S.: Liouville and Calabi–Yau type theorems for complex Hessian equations. Am. J. Math. 139, 403–415 (2017)

    Article  MathSciNet  Google Scholar 

  7. Evans, L.C.: Classical solutions of fully nonlinear convex, second order elliptic equations. Commun. Pure Appl. Math. 35, 333–363 (1982)

    Article  MathSciNet  Google Scholar 

  8. Freed, D.: Special Kähler manifolds. Commun. Math. Phys. 203, 31–52 (1999)

    Article  Google Scholar 

  9. Fu, J.-X., Wang, Z.-Z., Wu, D.-M.: Form-type equations on Kähler manifolds of nonnegative orthogonal bisectional curvature. Calc. Var. Partial Differ. Equ. 52, 327–344 (2015)

    Article  Google Scholar 

  10. Gu, H.-L., Zhang, Z.-H.: An extension of Mok’s theorem on the generalized Frankel conjecture. Sci. China Math. 53, 1253–1264 (2010)

    Article  MathSciNet  Google Scholar 

  11. Guan, B.: The Dirichlet problem for complex Monge–Ampère equations and regularity of the pluri-complex Green function. Commun. Anal. Geom. 6, 687–703 (1998)

    Article  Google Scholar 

  12. Guan, B.: Second order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds. Duke Math. J. 163, 1491–1524 (2014)

    Article  MathSciNet  Google Scholar 

  13. Guan, B.: The Dirichlet problem for fully nonlinear elliptic equations on Riemannian manifolds. arXiv:1403.2133 (2014)

  14. Guan, B., Li, Q.: Complex Monge–Ampère equations and totally real submanifolds. Adv. Math. 225, 1185–1223 (2010)

    Article  MathSciNet  Google Scholar 

  15. Guan, B., Sun, W.: On a class of fully nonlinear elliptic equations on Hermitian manifolds. Calc. Var. Partial Differ. Equ. 54, 901–916 (2015)

    Article  MathSciNet  Google Scholar 

  16. Guan, P.-F.: The extremal function associated to intrinsic norms. Ann. Math. 156, 197–211 (2002)

    Article  MathSciNet  Google Scholar 

  17. Guan, P.-F., Zhang, X.: Regularity of the geodesic equation in the space of Sasakian metrics. Adv. Math. 230, 321–371 (2012)

    Article  MathSciNet  Google Scholar 

  18. Hanani, A.: Equations du type de Monge–Ampère sur les varietes hermitiennes compactes. J. Funct. Anal. 137, 49–75 (1996)

    Article  MathSciNet  Google Scholar 

  19. Hou, Z.: Complex Hessian equation on Kähler manifold. Int. Math. Res. Not. IMRN 2009, 3098–3111 (2009)

    Article  Google Scholar 

  20. Ivochkina, N.: The integral method of barrier functions and the Dirichlet problem for equations with operators of the Monge–Ampère type. (Russian) Mat. Sb. (N.S.) 112, 193–206(1980), English transl.: Math. USSR Sb. 40, 179–192 (1981)

  21. Jacob, A., Yau, S.-T.: A special Lagrangian type equation for holomorphic line bundles. Math. Ann. 369, 869–898 (2017)

    Article  MathSciNet  Google Scholar 

  22. Krylov, N.V.: Boundedly nonhomogeneous elliptic and parabolic equations in a domain. Izvestia Math. Ser. 47, 75–108 (1983)

    Google Scholar 

  23. Li, Y.-Y.: Some existence results of fully nonlinear elliptic equations of Monge–Ampère type. Commun. Pure Appl. Math. 43, 233–271 (1990)

    Article  Google Scholar 

  24. Lu, Z.-Q.: A note on special Kähler manifolds. Math. Ann. 313, 711–713 (1999)

    Article  MathSciNet  Google Scholar 

  25. Mok, N.: The uniformization theorem for compact Kähler manifolds of non-negative bisectional curvature. J. Differ. Geom. 27, 179–214 (1988)

    Article  Google Scholar 

  26. Mori, S.: Projective manifolds with ample tangent bundles. Ann. Math. 110, 593–606 (1979)

    Article  MathSciNet  Google Scholar 

  27. Siu, Y.-T., Yau, S.-T.: Compact Kähler manifolds of positive bisectional curvature. Invent. Math. 59, 189–204 (1980)

    Article  MathSciNet  Google Scholar 

  28. Székelyhidi, G.: Fully non-linear elliptic equations on compact Hermitian manifolds. J. Differ. Geom. 109, 337–378 (2018)

    Article  MathSciNet  Google Scholar 

  29. Trudinger, N.: On the Dirichlet problem for Hessian equations. Acta Math. 175, 151–164 (1995)

    Article  MathSciNet  Google Scholar 

  30. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. \(I\). Commun. Pure Appl. Math. 31, 339–411 (1978)

  31. Yuan, R.-R.: Regularity of fully non-linear elliptic equations on Hermitian manifolds. Preprint (2017)

  32. Zhang, X.-W.: A priori estimates for complex Monge–Ampère equation on Hermitian manifolds. Int. Math. Res. Not. IMRN 2010, 3814–3836 (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

The author wants to thank Professor Bo Guan, Professor Chunhui Qiu and Professor Xi Zhang for their constant encouragement. The author is supported by the National Natural Science Foundation of China (Grant No. 11801587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rirong Yuan.

Additional information

Communicated by F.H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, R. On the Dirichlet problem for a class of fully nonlinear elliptic equations. Calc. Var. 60, 162 (2021). https://doi.org/10.1007/s00526-021-02012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02012-7

Mathematics Subject Classification

Navigation