Skip to main content
Log in

The fractional p-Laplacian evolution equation in \({\mathbb {R}}^N\) in the sublinear case

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the natural time-dependent fractional p-Laplacian equation posed in the whole Euclidean space, with parameter \(1<p<2\) and fractional exponent \(s\in (0,1)\). Rather standard theory shows that the Cauchy Problem for data in the Lebesgue \(L^q\) spaces is well posed, and the solutions form a family of non-expansive semigroups with regularity and other interesting properties. The superlinear case \(p>2\) has been dealt with in a recent paper. We study here the “fast” regime \(1<p<2\) which is more complex. As main results, we construct the self-similar fundamental solution for every mass value M and any p in the subrange \(p_c=2N/(N+s)<p<2\), and we show that this is the precise range where they can exist. We also prove that general finite-mass solutions converge towards the fundamental solution having the same mass, and convergence holds in all \(L^q\) spaces. Fine bounds in the form of global Harnack inequalities are obtained. Another main topic of the paper is the study of solutions having strong singularities. We find a type of singular solution called Very Singular Solution that exists for \(p_c<p<p_1\), where \(p_1\) is a new critical number that we introduce, \(p_1\in (p_c,2)\). We extend this type of singular solutions to the “very fast range” \(1<p<p_c\). They represent examples of weak solutions having finite-time extinction in that lower p range. We briefly examine the situation in the limit case \(p=p_c\). Finally, we show that very singular solutions are related to fractional elliptic problems of the nonlinear eigenvalue type, of interest in their own right.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, vol. 140. Academic Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Aleksandrov, A.D.: Certain estimates for the Dirichlet problem. Soviet Math. Dokl. 1, 1151–1154 (1960)

    MathSciNet  MATH  Google Scholar 

  3. Barenblatt, G.I.: Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge Univ. Press, Cambridge. Updated version of Similarity, Self-Similarity, and Intermediate Asymptotics, p. 1979. Consultants Bureau, New York (1996)

  4. Barrios, B., Peral, I., Soria, F., Valdinoci, E.: A Widder’s type theorem for the heat equation with nonlocal diffusion. Arch. Ration. Mech. Anal. 213(2), 629–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bénilan, P., Crandall, M.G.: The continuous dependence on \(\varphi \) of solutions of \(u_t - \Delta \varphi (u) = 0\). Indiana Univ. Math. J. 30, 161–177 (1981)

    Article  MathSciNet  Google Scholar 

  6. Bénilan, Ph., Crandall, M.G.: Regularizing effects of homogeneous evolution equations. In: Contributions to Analysis and Geometry, (suppl. to Amer. Jour. Math.), Johns Hopkins Univ. Press, Baltimore, Md., Pp. 23–39 (1981)

  7. Bénilan, P., Crandall, M.G.: Operators, completely accretive. In: Semigroups Theory and Evolution Equations (Delft, 1989) Volume 135 of Lecture Notes in Pure and Appl. Math. Marcel Dekker, New York, pp. 41–75 (1991)

  8. Berryman, J.G., Holland, C.J.: Stability of the separable solution for fast diffusion. Arch. Rational Mech. Anal. 74(4), 379–388 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blumenthal, R.M., Getoor, R.K.: Some theorems on stable processes. Trans. Am. Math. Soc. 95(2), 263–273 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonforte, M., Vázquez, J.L.: Global positivity estimates and Harnack inequalities for the fast diffusion equation. J. Funct. Anal. 240(2), 399–428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonforte, M., Vázquez, J.L.: Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 24–284 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bonforte, M., Salort, A.: The Cauchy Problem For The Fractional p-Laplacian Evolution Equation, in preparation

  13. Bonforte, M., Sire, Y., Vázquez, J.L.: Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin. Dyn. Syst.-A 35(12), 5725–5767 (2015)

  14. Bonforte, M., Sire, Y., Vázquez, J.L.: Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for \(W^{s, p}\) when \({s\rightarrow 1}\) and applications. J. Anal. Math. 87, 77–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brasco, L., Lindgren, E., Strömqvist, M.: Continuity of solutions to a nonlinear fractional diffusion equation, preprint. arXiv:1907.00910

  17. Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert Amsterdam (1973)

  18. Carrillo, J.A., Toscani, G.: Asymptotic \(L^1\)-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49(1), 113–142 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Carrillo, J.A., Vázquez, J.L.: Fine asymptotics for fast diffusion equations. Commun. Partial Differ. Equ. 28(5–6), 1023–1056 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Crandall, M.G., Liggett, T.M.: Generation of semi-groups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265–298 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  21. De Pablo, A., Quirós, F., Rodriguez, A., Vázquez, J.L.: A fractional porous medium equation. Adv. Math. 226(2), 1378–1409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. de Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A general fractional porous medium equation. Commun. Pure Appl. Math. 65, 1242–1284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. del Teso, F., Endal, J., Jakobsen, E.R.: Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. SIAM J. Numer. Anal. 56(6), 3611–3647 (2018)

  24. del Teso, F., Endal, J., Jakobsen, E.R.: Robust numerical methods for nonlocal (and local) equations of porous medium type. Part I: Theory. SIAM J. Numer. Anal. 57(5), 2266–2299 (2019)

  25. del Teso, F., Gómez-Castro, D., Vázquez, J. L.: Three representations of the fractional \(p\)-Laplacian: semigroup, extension and Balakrishnan formulas. arXiv:2010.06933

  26. DiBenedetto, E.: Degenerate Parabolic Equations. Universitext. Springer, New York (1993)

    Book  MATH  Google Scholar 

  27. DiBenedetto, E., Herrero, M.A.: On the Cauchy problem and initial traces for a degenerate parabolic equation. Trans. Am. Math. Soc. 314, 187–224 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ding, M., Zhang, C., Zhou, S.: Local boundedness and Hölder continuity for the parabolic fractional \(p\)-Laplace equations. Calc. Var. Partial Diff. Equ. 60(1), 45 (2021)

  30. Dyda, B.: Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract. Calc. Appl. Anal. 12, 536–555 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton Series in Applied Mathematics, Princeton University Press, Princeton (2002)

  32. Evans, L.C.: Applications of nonlinear semigroup theory to certain partial differential equations. In: Crandall, M.G. (ed.) Nonlinear Evolution Equations, pp. 163–188. Academic Press, Cambridge (1978)

    Google Scholar 

  33. Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

  34. Feo, F., Vázquez, J. L., Volzone, B.: Anisotropic fast diffusion equations. arXiv:2007.00122 [math.AP]

  35. Galaktionov, V.A., King, J.R.: Fast diffusion equation with critical Sobolev exponent in a ball. Nonlinearity 15(1), 173–188 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Galaktionov, V.A., Peletier, L.A.: Asymptotic behaviour near finite-time extinction for the fast diffusion equation. Arch. Rational Mech. Anal. 139(1), 83–98 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Grillo, G., Muratori, M., Punzo, F.: Fractional porous media equations: existence and uniqueness of weak solutions with measure data. Calc. Var. Partial Differ. Equ. 54(3), 3303–3335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian. Rev. Mat. Iberoam. 32(4), 1353–1392 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ishii, H., Nakamura, G.: A class of integral equations and approximation of p-Laplace equations. Calc. Var. Partial Differ. Equ. 37(3–4), 485–522 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kamin, S., Vázquez, J.L.: Fundamental solutions and asymptotic behaviour for the \(p\)-Laplacian equation. Rev. Mat. Iberoam. 4, 339–354 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. King, J.R.: Self-similar behaviour for the equation of fast nonlinear diffusion. Phil. Trans. R. Soc. Lond. A 343, 337–375 (1993)

    Article  MATH  Google Scholar 

  42. Komura, Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Jpn. 19, 493–507 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  43. Korvenpää, J., Kuusi, T., Lindgren, E.: Equivalence of solutions to fractional p-Laplace type equations. J. Math. Pures Appl. 132, 1–26 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Commun. Math. Phys. 337(3), 1317–1368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kwasnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Anal. Appl. 20, 7–51 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Leoni, G.: A first course in Sobolev spaces. In: Graduate Studies in Mathematics, vol. 181, 2nd edn. American Mathematical Society, Providence (2017)

  47. Mazón, J.M., Rossi, J.D., Toledo, J.: Fractional \(p\)-Laplacian evolution equations. J. Math. Pures Appl. 105(6), 810–844 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pierre, M.: Uniqueness of the solutions of \(u_t-\Delta \varphi (u)=0 \) with initial datum a measure. Nonlinear Anal. 6(2), 175–187 (1982)

    Article  MathSciNet  Google Scholar 

  49. Puhst, D.: On the evolutionary fractional p-Laplacian. Appl. Math. Res. Express. AMRX 2, 253–273 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Simonov, N.: Fast diffusion equations with Caffarelli-Kohn-Nirenberg weights: regularity and asymptotics. Thesis. Univ, Autónoma de Madrid (2020)

    Google Scholar 

  51. Stan, D., Vázquez, J.L.: The Fisher-KPP equation with nonlinear fractional diffusion. SIAM J. Math. Anal. 46(5), 3241–3276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Strömqvist, M.: Local boundedness of solutions to non-local parabolic equations modeled on the fractional p-Laplacian. J. Differ. Equ. 266(12), 794–7979 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Teng, K., Zhang, C., Zhou, S.: Renormalized and entropy solutions for the fractional \(p\)-Laplacian evolution equations. J. Evol. Equ. 19(2), 559–584 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Vázquez, J.L.: Asymptotic behaviour for the Porous Medium Equation posed in the whole space. J. Evol. Equ. 3, 67–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  55. Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type. Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, Oxford (2006)

  56. Vázquez, J.L.: The Porous Medium Equation. The Clarendon Press, Oxford University Press, Oxford, Mathematical Theory. Oxford Mathematical Monographs (2007)

    MATH  Google Scholar 

  57. Vázquez, J.L.: Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. (JEMS) 16(4), 769–803 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Vázquez, J.L.: The Dirichlet Problem for the fractional \(p\)-Laplacian evolution equation. J. Differ. Equ. 260(7), 6038–6056 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. Vázquez, J. L.: The mathematical theories of diffusion. Nonlinear and fractional diffusion, Lecture Notes in Mathematics, 2186. Fondazione CIME/CIME Foundation Subseries. Springer, Cham; Fondazione C.I.M.E., Florence (2017)

  60. Vázquez, J. L.: Asymptotic behaviour for the Fractional Heat Equation in the Euclidean space, CVEE (Complex Variables and Elliptic Equations), Special volume in honor of Vladimir I. Smirnov’s 130th anniversary, vol. 63, no. 7–8 (2018)

  61. Vázquez, J.L.: The evolution fractional p-Laplacian equation in \(R ^{N}\). Fundamental solution and asymptotic behaviour. Nonlinear Anal. 199, 112034 (2020)

  62. Vázquez, J. L.: Growing solutions of the fractional \(p\)-Laplacian equation in the fast diffusion range. Preprint. arXiv:2103.00552

  63. Vázquez, J.L., Volzone, B.: Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type. J. Math. Pures Appl. 101(5), 553–582 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  64. Vázquez, J.L., Volzone, B.: Optimal estimates for fractional fast diffusion equations. J. Math. Pures Appl. 103(2), 535–556 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Author partially funded by Projects MTM2014-52240-P and PGC2018-098440-B-I00 (Spain). Partially performed as an Honorary Professor at Univ. Complutense de Madrid. The author thanks F. del Teso for the numerical treatment that led to the self-similar profile displayed at the end of Sect. 8. He is also grateful to A. Iannizzotto for information and discussions about his paper [38] that led to the continuity results we present here. The anonymous referee provided a careful reading and a number of useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Vázquez.

Additional information

Communicated by M. del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez, J.L. The fractional p-Laplacian evolution equation in \({\mathbb {R}}^N\) in the sublinear case. Calc. Var. 60, 140 (2021). https://doi.org/10.1007/s00526-021-02005-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02005-6

Mathematics Subject Classification

Navigation