Skip to main content

Advertisement

Log in

Concentration behavior of endemic equilibrium for a reaction–diffusion–advection SIS epidemic model with mass action infection mechanism

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We are concerned with a reaction–diffusion–advection SIS epidemic model with mass action infection mechanism in a one dimensional bounded domain. We first prove the existence of endemic equilibrium (EE) whenever the basic reproduction number is greater than unity. We then focus on the asymptotic behavior of EE in three cases: large advection; small diffusion of the susceptible population; small diffusion of the infected population. Our main results show that the asymptotic profiles of the susceptible and infected populations obtained here are very different from that of the corresponding system without advection and that of the system with standard incidence infection mechanism. Thus, the effects of advection and different infection mechanisms are substantial on the spatial distribution of infectious disease; our findings bring novel insight into the disease control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramson, G., Kenkre, V.M.: Spatiotemporal patterns in Hantavirus infection. Phys. Rev. E 66, 011912 (2002)

    Article  Google Scholar 

  2. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic patch model. SIAM J. Appl. Math. 67, 1283–1309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction–diffusion model. Discrete Contin. Dyn. Syst. 21, 1–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Spatial patterns in a discrete-time SIS patch model. J. Math. Biol. 58, 339–375 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bichara, D., Iggidr, A.: Multi-patch and multi-group epidemic models: a new framework. J. Math. Biol. 77, 107–134 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brézis, H., Strauss, W.A.: Semi-linear second-order elliptic equations in \(L^{1}\). J. Math. Soc. Jpn. 25, 565–590 (1973)

    Article  MATH  Google Scholar 

  7. Chen, X., Lou, Y.: Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model. Indiana Univ. Math. J. 57, 627–658 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Lou, Y.: Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications. Indiana Univ. Math. J. 61, 45–80 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cui, R., Lam, K.-Y., Lou, Y.: Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Differ. Equ. 263, 2343–2373 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui, R., Lou, Y.: A spatial SIS model in advective heterogeneous environments. J. Differ. Equ. 261, 3305–3343 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahmen, K.A., Nelson, D.R., Shnerb, N.M.: Life and death near a windy oasis. J. Math. Biol. 41, 1–23 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Jong, M.C.M., Diekmann, O., Heesterbeek, H.: How does transmission of infection depend on population size? In: Epidemic Models: Their Structure and Relation to Data, pp. 84–94. Cambridge University Press, Cambridge (1995)

  13. Deng, K., Wu, Y.: Dynamics of a susceptible–infected–susceptible epidemic reaction–diffusion model. Proc. R. Soc. Edinb. Sect. A 146, 929–946 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infective Diseases: Model Building, Analysis and Interpretation. Wiley, New York (2000)

    MATH  Google Scholar 

  15. Ding, W., Huang, W., Kansakar, S.: Traveling wave solutions for a diffusive SIS epidemic model. Discrete Contin. Dyn. Syst. Ser. B 18, 1291–1304 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Du, Y.: Order structure and topological methods in nonlinear partial differential equations. Vol. 1, volume 2 of Series in Partial Differential Equations and Applications. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006). Maximum principles and applications

  17. Du, Z., Peng, R.: A priori \(L^{\infty }\) estimates for solutions of a class of reaction–diffusion systems. J. Math. Biol. 72, 1429–1439 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao, D.: Travel frequency and infectious diseases. SIAM J. Appl. Math. 79, 1581–1606 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, D., Dong, C.-P.: Fast diffusion inhibits disease outbreaks. Proc. Am. Math. Soc. 148, 1709–1722 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, D., Ruan, S.: An SIS patch model with variable transmission coefficients. Math. Biosci. 232, 110–115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ge, J., Kim, K.I., Lin, Z., Zhu, H.: A SIS reaction–diffusion–advection model in a low-risk and high-risk domain. J. Differ. Equ. 259, 5486–5509 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  23. Hale, J.K.: Asymptotic Behavior of Dissipative Systems, Mathematical Surveys Monograph, vol. 25. AMS, Providence (1988)

  24. Han, S., Lei, C.: Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence. Appl. Math. Lett. 98, 114–120 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, W., Han, M., Liu, K.: Dynamics of an SIS reaction–diffusion epidemic model for disease transmission. Math. Biosci. Eng. 7, 51–66 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jones, D.S., Sleeman, B.D.: Differential Equations and Mathematical Biology. Chapman & Hall/CRC, Baco Raton (2003)

    Book  MATH  Google Scholar 

  27. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-I. Proc. R. Soc. Lond Ser. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  28. Kuto, K., Matsuzawa, H., Peng, R.: Concentration profile of endemic equilibrium of a reaction–diffusion–advection SIS epidemic model. Calc. Var. Partial Differential Equations 56(2017), Art. 112

  29. Le, D.: Dissipativity and global attractors for a class of quasilinear parabolic systems. Commun. Partial Differ. Equ. 22, 413–433 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lei, C., Li, F., Liu, J.: Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment. Discrete Contin. Dyn. Syst. Ser. B 23, 4499–4517 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Li, B., Bie, Q.: Long-time dynamics of an SIRS reaction–diffusion epidemic model. J. Math. Anal. Appl. 475, 1910–1926 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, B., Li, H., Tong, Y.: Analysis on a diffusive SIS epidemic model with logistic source. Z. Angew. Math. Phys. 68 (2017), Art. 96

  33. Li, H., Peng, R.: Dynamics and asymptotic profiles of endemic equilibrium for SIS epidemic patch models. J. Math. Biol. 79, 1279–1317 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, H., Peng, R., Wang, F.-B.: Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model. J. Differ. Equ. 262, 885–913 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, H., Peng, R., Wang, Z.-A.: On a diffusive susceptible–infected–susceptible epidemic model with mass action mechanism and birth–death effect: analysis, simulations, and comparison with other mechanisms. SIAM J. Appl. Math. 78, 2129–2153 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, H., Peng, R., Xiang, T.: Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion. European J. Appl. Math. 31, 26–56 (2020)

    Article  MathSciNet  Google Scholar 

  37. Li, M.Y., Shuai, Z.: Global stability of an epidemic model in a patchy environment. Can. Appl. Math. Q. 17, 175–187 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Lieberman, G.M.: Bounds for the steady-state Sel’kov model for arbitrary \(p\) in any number of dimensions. SIAM J. Math. Anal. 36, 1400–1406 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lutscher, F., Lewis, M.A., McCauley, E.: Effects of heterogeneity on spread and persistence in rivers. Bull. Math. Biol. 68, 2129–2160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lutscher, F., McCauley, E., Lewis, M.A.: Spatial patterns and coexistence mechanisms in systems with unidirectional flow. Theor. Popul. Biol. 71, 267–277 (2007)

    Article  MATH  Google Scholar 

  41. Lutscher, F., Pachepsky, E., Lewis, M.A.: The effect of dispersal patterns on stream populations. SIAM Rev. 47, 749–772 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Magal, P., Webb, G., Wu, Y.: On a vector–host epidemic model with spatial structure. Nonlinearity 31, 5589–5614 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Magal, P., Webb, G., Wu, Y.: On the basic reproduction number of reaction–diffusion epidemic models. SIAM J. Appl. Math. 79, 284–304 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Magal, P., Zhao, X.-Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM. J. Math. Anal. 37, 251–275 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Martcheva, M.: An Introduction to Mathematical Epidemiology. Springer, New York (2015)

    Book  MATH  Google Scholar 

  46. McCallum, H., Barlow, N., Hone, J.: How should pathogen transmission be modelled? Trends Ecol. Evol. 16, 295–300 (2001)

    Article  Google Scholar 

  47. Peng, R.: Asymptotic profiles of the positive steady state for an SIS epidemic reaction–diffusion model. Part I. J. Differ. Equ. 247, 1096–1119 (2009)

    Article  MATH  Google Scholar 

  48. Peng, R., Liu, S.: Global stability of the steady states of an SIS epidemic reaction–diffusion model. Nonlinear Anal. 71, 239–247 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Peng, R., Shi, J., Wang, M.: On stationary patterns of a reaction–diffusion model with autocatalysis and saturation law. Nonlinearity 21, 1471–1488 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Peng, R., Wu, Y.: Global \(L^\infty \)-bounds and long-time behavior of a diffusive epidemic system in heterogeneous environment, SIAM J. Math. Anal., to appear. arXiv:1906.11699

  51. Peng, R., Yi, F.: Asymptotic profile of the positive steady state for an SIS epidemic reaction–diffusion model: effects of epidemic risk and population movement. Phys. D 259, 8–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Peng, R., Zhang, G., Zhou, M.: Asymptotic behavior of the principal eigenvalue of a second order linear elliptic operator with small/large diffusion coefficient. SIAM J. Math. Anal. 51, 4724–4753 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Peng, R., Zhao, X.-Q.: A reaction–diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Peng, R., Zhao, X.-Q.: Effects of diffusion and advection on the principal eigenvalue of a periodic-parabolic problem with applications. Calc. Var. Partial Differ. Equ. 54, 1611–1642 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Peng, R., Zhou, M.: Effects of large degenerate advection and boundary conditions on the principal eigenvalue and its eigenfunction of a linear second order elliptic operator. Indiana Univ. Math. J. 67, 2523–2568 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. Salmani, M., van den Driessche, P.: A model for disease transmission in a patchy environment. Discrete Contin. Dyn. Syst. Ser. B 6, 185–202 (2006)

    MathSciNet  MATH  Google Scholar 

  57. Song, P., Lou, Y., Xiao, Y.: A spatial SEIRS reaction–diffusion model in heterogeneous environment. J. Differ. Equ. 267, 5084–5114 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. Sun, C., Wei, Y., Arino, J., Khan, K.: Effect of media-induced social distancing on disease transmission in a two patch setting. Math. Biosci. 230, 87–95 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. Tong, Y., Lei, C.: An SIS epidemic reaction–diffusion model with spontaneous infection in a spatially heterogeneous environment. Nonlinear Anal. Real World Appl. 41, 443–460 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wang, B.-G., Li, W.-T., Wang, Z.-C.: A reaction–diffusion SIS epidemic model in an almost periodic environment. Z. Angew. Math. Phys. 66, 3085–3108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wang, W., Zhao, X.-Q.: An age-structured epidemic model in a patchy environment. SIAM J. Appl. Math. 65, 1597–1614 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang, W., Zhao, X.-Q.: Basic reproduction numbers for reaction–diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wen, X., Ji, J., Li, B.: Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism. J. Math. Anal. Appl. 458, 715–729 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. Wu, Y., Zou, X.: Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism. J. Differ. Equ. 261, 4424–4447 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhao, X.-Q.: Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications. Can. Appl. Math. Q. 3, 473–495 (1995)

    MathSciNet  MATH  Google Scholar 

  67. Zhao, X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maolin Zhou.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. Zhou was partially supported by National Key R&D Program of China (2020YFA0713300) and Nankai Zhide Foundation. R. Cui was supported by Natural Science Foundation of Heilongjiang Province (No. LH2020A012). H. Li was supported by NSF of China (Nos. 11701180, 11971498). R. Peng was supported by NSF of China (No. 11671175), the Priority Academic Program Development of Jiangsu Higher Education Institutions, Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (No. PPZY2015A013) and Qing Lan Project of Jiangsu Province.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, R., Li, H., Peng, R. et al. Concentration behavior of endemic equilibrium for a reaction–diffusion–advection SIS epidemic model with mass action infection mechanism. Calc. Var. 60, 184 (2021). https://doi.org/10.1007/s00526-021-01992-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01992-w

Mathematics Subject Classification

Navigation