Skip to main content
Log in

Almost minimizers for the thin obstacle problem

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider Anzellotti-type almost minimizers for the thin obstacle (or Signorini) problem with zero thin obstacle and establish their \(C^{1,\beta }\) regularity on the either side of the thin manifold, the optimal growth away from the free boundary, the \(C^{1,\gamma }\) regularity of the regular part of the free boundary, as well as a structural theorem for the singular set. The analysis of the free boundary is based on a successful adaptation of energy methods such as a one-parameter family of Weiss-type monotonicity formulas, Almgren-type frequency formula, and the epiperimetric and logarithmic epiperimetric inequalities for the solutions of the thin obstacle problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This can be seen on the explicit example \(u(x)={\text {Re}}(x_1+i|x_n|)^{3/2}\), which is a solution of the obstacle problem with \(\psi =0\) on .

  2. Which follows from the inequality \( \int _{B_r(x_0)}|\nabla h|^2\le \int _{B_r(x_0)}|\nabla ( (1-\varepsilon )h+\varepsilon v)|^2\), \(\varepsilon \in (0,1)\) by a first variation argument.

  3. We use the superscript A to distinguish this rescaling from the other rescalings, namely, homogeneous and almost homogeneous rescalings that we consider later.

References

  1. Almgren, F.J., Jr.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 4(165), viii+199 (1976). https://doi.org/10.1090/memo/0165

    Article  MathSciNet  MATH  Google Scholar 

  2. Almgren Jr., F.J.: Almgren’s big regularity paper, World Scientific Monograph Series in Mathematics, vol. 1, World Scientific Publishing Co., Inc., River Edge, NJ, (2000). Q-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2; With a preface by Jean E. Taylor and Vladimir Scheffer

  3. Ambrosio, L.: Corso introduttivo alla teoria geometrica della misura ed alle superfici minime, Appunti dei Corsi Tenuti da Docenti della Scuola. [Notes of Courses Given by Teachers at the School], Scuola Normale Superiore, Pisa (1997) (Italian)

  4. Anzellotti, G.: On the \(C^{1,\alpha }\)-regularity of \(\omega \)-minima of quadratic functionals. Boll. Un. Mat. Ital. C (6) 2(1), 195–212 (1983). (English, with Italian summary)

    MathSciNet  MATH  Google Scholar 

  5. Athanasopoulos, I., Caffarelli, L.A.: Optimal regularity of lower dimensional obstacle problems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34], 49–66, 226, https://doi.org/10.1007/s10958-005-0496-1 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 132 (2006), no. 3, 274–284

  6. Athanasopoulos, I., Caffarelli, L., Milakis, E.: On the regularity of the non-dynamic parabolic fractional obstacle problem. J. Differ. Equ. 265(6), 2614–2647 (2018). https://doi.org/10.1016/j.jde.2018.04.043

    Article  MathSciNet  MATH  Google Scholar 

  7. Athanasopoulos, I., Caffarelli, L.A., Salsa, S.: The structure of the free boundary for lower dimensional obstacle problems. Am. J. Math. 130(2), 485–498 (2008). https://doi.org/10.1353/ajm.2008.0016

    Article  MathSciNet  MATH  Google Scholar 

  8. Bombieri, E.: Regularity theory for almost minimal currents. Arch. Ration. Mech. Anal. 78(2), 99–130 (1982). https://doi.org/10.1007/BF00250836

    Article  MathSciNet  MATH  Google Scholar 

  9. Banerjee, A., Smit Vega Garcia, M., Zeller, A.K.: Higher regularity of the free boundary in the parabolic Signorini problem. Calc. Var. Partial Differ. Equ. 56(1), 7 (2017). https://doi.org/10.1007/s00526-016-1103-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Caffarelli, L.A.: Further regularity for the Signorini problem. Comm. Partial Differ. Equ. 4(9), 1067–1075 (1979). https://doi.org/10.1080/03605307908820119

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L., Ros-Oton, X., Serra, J.: Obstacle problems for integro-differential operators: regularity of solutions and free boundaries. Invent. Math. 208(3), 1155–1211 (2017). https://doi.org/10.1007/s00222-016-0703-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32(7–9), 1245–1260 (2007). https://doi.org/10.1080/03605300600987306

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008). https://doi.org/10.1007/s00222-007-0086-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Colombo, M., Spolaor, L., Velichkov, B.: Direct epiperimetric inequalities for the thin obstacle problem and applications. Comm. Pure Appl. Math. 73(2), 384–420 (2020). https://doi.org/10.1002/cpa.21859

    Article  MathSciNet  MATH  Google Scholar 

  15. Danielli, D., Garofalo, N., Petrosyan, A., To, T.: Optimal regularity and the free boundary in the parabolic Signorini problem. Mem. Am. Math. Soc. 249, 1181 (2017). https://doi.org/10.1090/memo/1181

    Article  MathSciNet  MATH  Google Scholar 

  16. Danielli, D., Petrosyan, A., Pop, C.A.: Obstacle problems for nonlocal operators, New developments in the analysis of nonlocal operators. Contemp. Math. 723, 191–214 (2019). https://doi.org/10.1090/conm/723/14570

    Article  MATH  Google Scholar 

  17. David, G., Engelstein, M., Toro, T.: Free boundary regularity for almost-minimizers. Adv. Math. 350, 1109–1192 (2019). https://doi.org/10.1016/j.aim.2019.04.059

    Article  MathSciNet  MATH  Google Scholar 

  18. David, G., Toro, T.: Regularity of almost minimizers with free boundary. Calc. Var. Partial Differ. Equ. 54(1), 455–524 (2015). https://doi.org/10.1007/s00526-014-0792-z

    Article  MathSciNet  MATH  Google Scholar 

  19. De Silva, D., Savin, O.: Boundary Harnack estimates in slit domains and applications to thin free boundary problems. Rev. Mat. Iberoam. 32(3), 891–912 (2016). https://doi.org/10.4171/RMI/902

    Article  MathSciNet  MATH  Google Scholar 

  20. De Silva, D., Savin, O.: Thin one-phase almost minimizers. Nonlinear Anal. 193, 111507 (2020). https://doi.org/10.1016/j.na.2019.04.006

    Article  MathSciNet  MATH  Google Scholar 

  21. De Silva, D., Savin, O.: Almost minimizers of the one-phase free boundary problem. Comm. Partial Differ. Equ. 45(8), 913–930 (2020). https://doi.org/10.1080/03605302.2020.1743718

    Article  MathSciNet  MATH  Google Scholar 

  22. de Queiroz, O.S., Tavares, L.S.: Almost minimizers for semilinear free boundary problems with variable coefficients. Math. Nachr. 291(10), 1486–1501 (2018). https://doi.org/10.1002/mana.201600103

    Article  MathSciNet  MATH  Google Scholar 

  23. Dolcini, A., Esposito, L., Fusco, N.: \(C^{0,\alpha }\) regularity of \(\omega \)-minima, language=English, with Italian summary. Boll. Un. Mat. Ital. A (7) 10(1), 113–125 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Duvaut, G., Lions, J.-L.: Inequalities in mechanics and physics. Springer-Verlag, Berlin-New York (1976). Translated from the French by C. W. John; Grundlehren der Mathematischen Wissenschaften, 219

  25. Duzaar, F., Gastel, A., Grotowski, J.F.: Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal. 32(3), 665–687 (2000). https://doi.org/10.1137/S0036141099374536

    Article  MathSciNet  MATH  Google Scholar 

  26. Esposito, L.: Leonetti, Francesco, Mingione, Giuseppe, Sharp regularity for functionals with \((p, q)\) growth. J. Differ. Equ. 204(1), 5–55 (2004). https://doi.org/10.1016/j.jde.2003.11.007

    Article  Google Scholar 

  27. Esposito, L., Mingione, G.: A regularity theorem for \(\omega \)-minimizers of integral functionals, language=English, with English and Italian summaries. Rend. Mat. Appl. (7) 19(1), 17–44 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Fefferman, C.: Extension of \(C^{m,\omega }\)-smooth functions by linear operators. Rev. Mat. Iberoam. 25(1), 1–48 (2009). https://doi.org/10.4171/RMI/568

    Article  MathSciNet  MATH  Google Scholar 

  29. Focardi, M., Spadaro, E.: An epiperimetric inequality for the thin obstacle problem. Adv. Differ. Equ. 21(1–2), 153–200 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Focardi, M., Spadaro, E.: On the measure and the structure of the free boundary of the lower dimensional obstacle problem. Arch. Ration. Mech. Anal. 230(1), 125–184 (2018). https://doi.org/10.1007/s00205-018-1242-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Focardi, M., Spadaro, E.: Correction to: on the measure and the structure of the free boundary of the lower dimensional obstacle problem. Arch. Ration. Mech. Anal. 230(2), 783–784 (2018). https://doi.org/10.1007/s00205-018-1273-x

    Article  MathSciNet  MATH  Google Scholar 

  32. Garofalo, N., Lin, F.-H.: Monotonicity properties of variational integrals, \(A_p\) weights and unique continuation. Indiana Univ. Math. J. 35(2), 245–268 (1986). https://doi.org/10.1512/iumj.1986.35.35015

    Article  MathSciNet  MATH  Google Scholar 

  33. Garofalo, N., Lin, F.-H.: Unique continuation for elliptic operators: a geometric-variational approach. Comm. Pure Appl. Math. 40(3), 347–366 (1987). https://doi.org/10.1002/cpa.3160400305

    Article  MathSciNet  MATH  Google Scholar 

  34. Garofalo, N., Petrosyan, A.: Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem. Invent. Math. 177(2), 415–461 (2009). https://doi.org/10.1007/s00222-009-0188-4

    Article  MathSciNet  MATH  Google Scholar 

  35. Garofalo, N., Petrosyan, A., Smit Vega Garcia, M.: An epiperimetric inequality approach to the regularity of the free boundary in the Signorini problem with variable coefficients. J. Math. Pures Appl. (9) 105(6), 745–787 (2016). https://doi.org/10.1016/j.matpur.2015.11.013. (English, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  36. Garofalo, N., Petrosyan, A., Pop, C.A., Smit Vega Garcia, M.: Regularity of the free boundary for the obstacle problem for the fractional Laplacian with drift. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(3), 533–570 (2017). https://doi.org/10.1016/j.anihpc.2016.03.001

    Article  MathSciNet  MATH  Google Scholar 

  37. Garofalo, N., Smit Vega Garcia, M.: New monotonicity formulas and the optimal regularity in the Signorini problem with variable coefficients. Adv. Math. 262, 682–750 (2014). https://doi.org/10.1016/j.aim.2014.05.021

    Article  MathSciNet  MATH  Google Scholar 

  38. Giaquinta, M., Giusti, E.: On the regularity of the minima of variational integrals. Acta Math. 148, 31–46 (1982). https://doi.org/10.1007/BF02392725

    Article  MathSciNet  MATH  Google Scholar 

  39. Giaquinta, M., Giusti, E.: Quasiminima. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 79–107 (1984)

    Article  MathSciNet  Google Scholar 

  40. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge, NJ (2003)

    Book  Google Scholar 

  41. Han, Q., Lin, F.: Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, 1, New York University, Courant Institute of Mathematical Sciences. New York. American Mathematical Society, Providence, RI (1997)

    Google Scholar 

  42. Jeon, S., Petrosyan, A.: Almost minimizers for certain fractional variational problems. Algebra i Analiz 32(4), 166–199 (2020)

    MathSciNet  Google Scholar 

  43. Kinderlehrer, D.: The smoothness of the solution of the boundary obstacle problem. J. Math. Pures Appl. (9) 60(2), 193–212 (1981)

    MathSciNet  MATH  Google Scholar 

  44. Koch, H., Petrosyan, A., Shi, W.: Higher regularity of the free boundary in the elliptic Signorini problem. Nonlinear Anal. 126, 3–44 (2015). https://doi.org/10.1016/j.na.2015.01.007

    Article  MathSciNet  MATH  Google Scholar 

  45. Koch, H., Rüland, A., Shi, W.: The variable coefficient thin obstacle problem: Carleman inequalities. Adv. Math. 301, 820–866 (2016). https://doi.org/10.1016/j.aim.2016.06.023

    Article  MathSciNet  MATH  Google Scholar 

  46. Koch, H., Rüland, A., Shi, W.: The variable coefficient thin obstacle problem: higher regularity. Adv. Differ. Equ. 22(11–12), 793–866 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Koch, H., Rüland, A., Shi, W.: The variable coefficient thin obstacle problem: optimal regularity and regularity of the regular free boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(4), 845–897 (2017). https://doi.org/10.1016/j.anihpc.2016.08.001

    Article  MathSciNet  MATH  Google Scholar 

  48. Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51(4), 355–426 (2006). https://doi.org/10.1007/s10778-006-0110-3

    Article  MathSciNet  MATH  Google Scholar 

  49. Petrosyan, A., Pop, C.A.: Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift. J. Funct. Anal. 268(2), 417–472 (2015). https://doi.org/10.1016/j.jfa.2014.10.009

    Article  MathSciNet  MATH  Google Scholar 

  50. Petrosyan, A., Shahgholian, H., Uraltseva, N.: Regularity of Free Boundaries in Obstacle-type Problems, Graduate Studies in Mathematics, vol. 136. American Mathematical Society, Providence, RI (2012)

    Book  Google Scholar 

  51. Petrosyan, A., Zeller, A.: Boundedness and continuity of the time derivative in the parabolic Signorini problem. Math. Res. Lett. 26(1), 281–292 (2019). https://doi.org/10.4310/MRL.2019.v26.n1.a13

    Article  MathSciNet  MATH  Google Scholar 

  52. Rüland, A., Shi, W.: Optimal regularity for the thin obstacle problem with \(C^{0,\alpha }\) coefficients. Calc. Var. Partial Differ. Equ. 56(5), 129 (2017). https://doi.org/10.1007/s00526-017-1230-9

    Article  MATH  Google Scholar 

  53. Signorini, A.: Questioni di elasticità non linearizzata e semilinearizzata. Rend. Mat. e Appl. (5) 18, 95–139 (1959). (Italian)

    MathSciNet  MATH  Google Scholar 

  54. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007). https://doi.org/10.1002/cpa.20153

    Article  MathSciNet  MATH  Google Scholar 

  55. Ural’tseva, N.N.: Hölder continuity of gradients of solutions of parabolic equations with boundary conditions of Signorini type, language=Russian. Dokl. Akad. Nauk SSSR 280(3), 563–565 (1985)

    MathSciNet  Google Scholar 

  56. Weiss, G.S.: Partial regularity for a minimum problem with free boundary. J. Geom. Anal. 9(2), 317–326 (1999). https://doi.org/10.1007/BF02921941

    Article  MathSciNet  MATH  Google Scholar 

  57. Weiss, G.S.: A homogeneity improvement approach to the obstacle problem. Invent. Math. 138(1), 23–50 (1999). https://doi.org/10.1007/s002220050340

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshak Petrosyan.

Additional information

Communicated by L. Caffarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Petrosyan supported in part by NSF Grant DMS-1800527.

Appendix A: Some examples of almost minimizers

Appendix A: Some examples of almost minimizers

Example A.1

If u is a minimizer of the functional

$$\begin{aligned} \int _D a(x)|\nabla u|^2 \end{aligned}$$

over the set with strictly positive \(a\in C^{0,\alpha }({\overline{D}})\), \(0<\alpha \le 1\), then u is an almost minimizer for the Signorini problem with a gauge function \(\omega (r)=C r^\alpha \).

Proof

This is rather immediate. \(\square \)

Example A.2

Let u be a solution of the Signorini problem for the Laplacian with drift with the velocity field \(b\in L^p(B_1)\), \(p>n\):

$$\begin{aligned}&-\Delta u + b(x)\nabla u=0\quad \text {in }B_1^\pm \\&-\partial _{x_n}u\ge 0,\quad u\ge 0,\quad u\partial _{x_n}u=0\quad \text {on }B_1', \end{aligned}$$

even in \(x_n\)-variable. We understand this in the weak sense that u satisfies the variational inequality

$$\begin{aligned} \int _{B_1}\nabla u\nabla (w-u)+(b(x)\nabla u) (w-u)\ge 0, \end{aligned}$$

for any competitor \(w\in {\mathfrak {K}}_{0,u}(B_1,B_1')\), i.e. \(w\in u+W^{1,2}_0(B_1)\) such that \(w\ge 0\) on \(B_1'\) in the sense of traces. Then u is an almost minimizer for the Signorini problem with \(\psi =0\) on and a gauge function \(\omega (r)=Cr^{1-n/p}\).

Proof

Let \(B_r(x_0)\Subset B_1\) and \(w\in {\mathfrak {K}}_{0,u}(B_r(x_0),B_1')\). Extending w as equal to u in \(B_1\setminus B_r(x_0)\), and applying the variational inequality for u, we obtain

$$\begin{aligned} \int _{B_r(x_0)}\nabla u\nabla (w-u)+b(x)\nabla u(w-u)\ge 0. \end{aligned}$$
(A.1)

Let v be the Signorini replacement of u on \(B_r(x_0)\). Then v satisfies the variational inequality

$$\begin{aligned} \int _{B_r(x_0)} \nabla v\nabla (w-v)\ge 0, \end{aligned}$$
(A.2)

for all w as above. Now, taking \(w=u\pm (u-v)^+\) in (A.1) we will have

$$\begin{aligned} \int _{B_r(x_0)}\nabla u\nabla (u-v)^+ +(b(x)\nabla u)(u-v)^+=0. \end{aligned}$$

Next, taking \(w=v+(u-v)^+\) in (A.2), we have

$$\begin{aligned} \int _{B_r(x_0)}\nabla v\nabla (u-v)^+\ge 0. \end{aligned}$$

Taking the difference, we then obtain

$$\begin{aligned} \int _{B_r(x_0)}|\nabla (u-v)^+|^2\le -\int _{B_r(x_0)}b(x)\nabla u(u-v)^+. \end{aligned}$$

Similarly, taking \(w=v\pm (v-u)^+\) in (A.2) and \(w=u+(v-u)^+\) in (A.1) and subtracting the resulting inequalities, we obtain

$$\begin{aligned} \int _{B_r(x_0)}|\nabla (v-u)^+|^2\le \int _{B_r(x_0)}b(x)\nabla u(v-u)^+. \end{aligned}$$

Hence, combining the inequalities above, we arrive at

$$\begin{aligned} \int _{B_r(x_0)}|\nabla (v-u)|^2\le \int _{B_r(x_0)}|b(x)| |\nabla u| |v-u|. \end{aligned}$$

Then, applying Hölder’s inequality, we have for \(p>n\)

$$\begin{aligned} \int _{B_r(x_0)}|\nabla (v-u)|^2\le \Vert b\Vert _{L^p(B_r(x_0))}\Vert \nabla u\Vert _{L^2(B_r(x_0))}\Vert v-u\Vert _{L^{p^*}(B_r(x_0))}, \end{aligned}$$

with \(p^*=2p/(p-2)\). Next, since \(v-u\in W^{1,2}_0(B_r(x_0))\), from the Sobolev’s inequality we have

$$\begin{aligned} \Vert v-u\Vert _{L^{p^*}(B_r(x_0))}\le C_{n,p} r^{1-n/p}\Vert \nabla (v-u)\Vert _{L^2(B_r(x_0))} \end{aligned}$$

and hence we can conclude that

$$\begin{aligned} \int _{B_r(x_0)}|\nabla (v-u)|^2\le Cr^{2(1-n/p)}\int _{B_r(x_0)}|\nabla u|^2 \end{aligned}$$

with \(C=C_{n,p}\Vert b\Vert _{L^p(B_1)}^2\). This implies

$$\begin{aligned} \int _{B_r(x_0)}|\nabla u|^2-\int _{B_r(x_0)}|\nabla v|^2&=\int _{B_r(x_0)} (\nabla u+\nabla v)(\nabla u- \nabla v)\\&\le Cr^\gamma \int _{B_r(x_0)}( |\nabla u|^2+|\nabla v|^2)+Cr^{-\gamma }\int _{B_r(x_0)}|\nabla (v-u)|^2\\&\le Cr^\gamma \int _{B_r(x_0)}(|\nabla u|^2+|\nabla v|^2)+Cr^{2(1-n/p)-\gamma }\int _{B_r(x_0)}|\nabla u|^2, \end{aligned}$$

where we have used Young’s inequality in the second line. Choosing \(\gamma =1-n/p\) we then deduce that for small enough \(0<r<r_0(n,p,\Vert b\Vert _{L^p(B_1)})\)

$$\begin{aligned} \int _{B_r(x_0)}|\nabla u|^2\le (1+Cr^{1-n/p})\int _{B_r(x_0)}|\nabla v|^2 \end{aligned}$$

with \(C=C_{n,p}\Vert b\Vert _{L^p(B_1)}^2\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, S., Petrosyan, A. Almost minimizers for the thin obstacle problem. Calc. Var. 60, 124 (2021). https://doi.org/10.1007/s00526-021-01986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01986-8

Mathematics Subject Classification

Navigation