Skip to main content
Log in

Dynamics of nearly parallel vortex filaments for the Gross–Pitaevskii equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Klein et al. (J Fluid Mech 288:201–248, 1995) have formally derived a simplified asymptotic motion law for the evolution of nearly parallel vortex filaments in the context of the three dimensional Euler equation for incompressible fluids. In the present work, we rigorously derive the corresponding asymptotic motion law in the context of the Gross–Pitaevskii equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Described further down, otherwise they wouldn’t be anything close to parallel!

  2. Since a rescaling will eventually be made in the description that sends the lateral boundary to infinity, the exact shape of \(\omega \) is of limited impact on the analysis, and the limit flow for the filaments does not depend at all on \(\omega .\) Still, some of our later assumptions for establishing convergence do depend on \(\omega \), see e.g. (9).

  3. The other two components of the 3D Jacobian also have interpretations, see e.g. Proposition 2 below, but they do not enter in the statement of our main theorem.

  4. After this work was completed, Dávila, del Pino, Musso and Wei have announced the construction of solutions to the Euler equation exhibiting the leapfrogging phenomenon.

  5. We will not need the exact definition of \(\kappa (n,\varepsilon ,\omega )\) or \(\gamma \) in this paper, but these constants will appear in various formulas.

  6. Note that the sets \({\mathcal {G}}^\varepsilon _2\) and \({\mathcal {B}}^\varepsilon _2\) from [7] coincide exactly with our sets \({\mathcal {G}}(u_\varepsilon )\) and \({\mathcal {B}}(u_\varepsilon )\); compare our definitions (45) with [7], equation (3.16).

  7. These results assume that (54), (55) hold for every \(z\in I\), but the proofs extend to our situation with essentially no change.

  8. after extracting a uniformly convergent subsequence of \(\{ \tilde{f}^\varepsilon \}\)

References

  1. Banica, V., Miot, E.: Global existence and collisions for symmetric configurations of nearly parallel vortex filaments. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(5), 813–832 (2012)

    Article  MathSciNet  Google Scholar 

  2. Banica, V., Faou, E., Miot, E.: Collision of almost parallel vortex filaments. Commun. Pure Appl. Math. 70(2), 378–405 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau Vortices. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  4. Brezis, H., Coron, J.-M., Lieb, E.: Harmonic maps with defects. Commun. Math. Phys. 107(4), 649–705 (1986)

    Article  MathSciNet  Google Scholar 

  5. Buttà, P., Marchioro, C.: Time evolution of concentrated vortex rings. J. Math. Fluid Mech. 19, (2020) article 19

  6. Colliander, J.E., Jerrard, R.L.: Vortex Dynamics for the Ginzburg–Landau–Schrödinger equation. Int. Math. Res. Not. 7, 333–358 (1998)

    Article  Google Scholar 

  7. Contreras, A., Jerrard, R.L.: Nearly parallel vortex filaments in the 3D Ginzburg–Landau equations. Geom. Funct. Anal. 27(5), 1161–1230 (2017)

    Article  MathSciNet  Google Scholar 

  8. Craig, W., García-Azpeitia, C., Yang, C.-R.: Standing waves in near-parallel vortex filaments. Commun. Math. Phys. 350, 175–203 (2017)

    Article  MathSciNet  Google Scholar 

  9. Dávila, J., del Pino, M., Musso, M., Wei, J.: Travelling helices and the vortex filament conjecture in the incompressible Euler equations, arXiv:2007.00606v2

  10. Del Pino, M., Kowalczyk, M.: Renormalized energy of interacting Ginzburg–Landau vortex filaments. J. Lond. Math. Soc. (2) 77(3), 647–665 (2008)

    Article  MathSciNet  Google Scholar 

  11. Fonda, E., Meichle, D.P., Oullette, N.T., Hormoz, S., Lathrod, D.P.: Direct observation of Kelvin waves excited by quantized vortex reconnection. Proc. Nat. Acad. Sci 111(S1), 4707–4710 (2014)

    Article  Google Scholar 

  12. Gallay, T., Smets, D.: Spectral stability of inviscid columnar vortices. Analysis and PDE (to appear)

  13. Gallay, T., Smets, D.: On the linear stability of vortex columns in the energy space. J. Math. Fluid Mech. 21, article 48 (2019)

  14. Jerrard, R.L.: Vortex dynamics for the Ginzburg–Landau wave equation. Calc. Var. Partial Differ. Equ. 9(1), 1–30 (1999)

    Article  MathSciNet  Google Scholar 

  15. Jerrard, R.L.: Vortex filament dynamics for Gross–Pitaevsky type equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(4), 733–768 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Jerrard, R.L., Smets, D.: Leapfrogging vortex rings for the three-dimensional Gross–Pitaevskii equation. Ann. PDE 4, 48 (2018)

    Article  MathSciNet  Google Scholar 

  17. Jerrard, R.L., Soner, H.M.: The Jacobian and the Ginzburg–Landau energy. Calc. Var. Partial Differ. Equ. 14, 151–191 (2002)

    Article  MathSciNet  Google Scholar 

  18. Jerrard, R.L., Spirn, D.: Refined Jacobian estimates and Gross–Pitaevsky vortex dynamics. Arch. Ration. Mech. Anal. 190, 425–475 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kenig, C., Ponce, G., Vega, L.: On the interaction of nearly parallel vortex filaments. Commun. Math. Phys. 243(3), 471–483 (2003)

    Article  MathSciNet  Google Scholar 

  20. Klein, R., Majda, A., Damodaran, K.: Simplified equations for the interaction of nearly parallel vortex filaments. J. Fluid Mech. 288, 201–248 (1995)

    Article  MathSciNet  Google Scholar 

  21. Lions, P.-L., Majda, A.: Equilibrium statistical theory for nearly parallel vortex filaments. Commun. Pure Appl. Math. 53(1), 76–142 (2000)

    Article  MathSciNet  Google Scholar 

  22. Marchioro, C., Pulvirenti, M.: Vortices and localization in Euler flows. Commun. Math. Phys. 154, 49–61 (1993)

    Article  MathSciNet  Google Scholar 

  23. Marchioro, C., Pulvirenti, M.: Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences 96. Springer, Berlin (1993)

    MATH  Google Scholar 

  24. Sandier, E., Serfaty, S.: A product-estimate for Ginzburg–Landau and corollaries. J. Funct. Anal. 211(1), 219–244 (2004)

    Article  MathSciNet  Google Scholar 

  25. Sandier, E., Serfaty, S.: Vortices in the magnetic Ginzburg–Landau model. Progress in Nonlinear Differential Equations and Their Applications, 70. Birkhuser, Boston (2007)

  26. Zakharov, V.E.: Wave collapse. Usp. Fiz. Nauk 155, 529–533 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the ANR project ODA (ANR-18-CE40-0020-01) of the Agence Nationale de la Recherche, and by the Natural Sciences and Engineering Research Council of Canada under Operating Grant 261955. The meticulous reading of the manuscript and pertinent suggestions made by an anonymous referee were highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Jerrard.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerrard, R.L., Smets, D. Dynamics of nearly parallel vortex filaments for the Gross–Pitaevskii equation. Calc. Var. 60, 127 (2021). https://doi.org/10.1007/s00526-021-01984-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-01984-w

Mathematics Subject Classification

Navigation