Skip to main content
Log in

Minimizing 1/2-harmonic maps into spheres

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this article, we improve the partial regularity theory for minimizing 1/2-harmonic maps of Millot and Sire (Arch Ration Mech Anal 215:125–210, 2015), Moser( J Geom Anal 21:588–598, 2011) in the case where the target manifold is the \((m-1)\)-dimensional sphere. For \(m\geqslant 3\), we show that minimizing 1/2-harmonic maps are smooth in dimension 2, and have a singular set of codimension at least 3 in higher dimensions. For \(m=2\), we prove that, up to an orthogonal transformation, x/|x| is the unique non trivial 0-homogeneous minimizing 1/2-harmonic map from the plane into the circle \({\mathbb {S}}^1\). As a corollary, each point singularity of a minimizing 1/2-harmonic map from a 2d domain into \({\mathbb {S}}^1\) has a topological charge equal to \(\pm 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Recall that the Fourier transform of the Poisson kernel is given by \(\mathrm{exp}(-2\pi x_{n+1}|\xi |)\).

  2. One can also prove that \(\partial _\nu w_g\) does not vanish on \(\partial {\mathbb {D}}\) as follows. Using (4.2) and (constrained) outer variations of \({\mathcal {E}}(\cdot ,{\mathbb {S}}^1)\) at g, we can argue as in [30, Remark 4.3] to derive the equation

    $$\begin{aligned} \frac{\partial w_g}{\partial \nu }(x)=\left( \frac{\gamma _1}{2} \int _{{\mathbb {S}}^1} \frac{|g(x)-g(y)|^2}{|x-y|^2}\mathrm{d}y\right) \,g(x) \quad \text {for}\ x\in {\mathbb {S}}^1\,. \end{aligned}$$

    Then, assuming by contradiction that \(\partial _\nu w_g\) vanishes at some point \(x_0\in {\mathbb {S}}^1\), this equation implies that g is equal to the constant \(g(x_0)\) (since \(|g|=1\)).

  3. For \(x\in \partial ^+B_1\) and \(\tau _1,\tau _2\in \mathrm{Tan}(x,\partial ^+B)\) such that \((\tau _1,\tau _2,x)\) is a direct orthonormal basis of \({\mathbb {R}}^3\), we have \(\nabla _\tau g(x):=(\partial _{\tau _1}g(x),\partial _{\tau _2}g(x))\), and \(\mathrm{det}(\nabla _\tau g(x))\) does not depend on the choice of \(\tau _1\) and \(\tau _2\).

  4. A way to construct the sequence \((\varphi _k)\) is as follows. Consider a cut-off function \(\chi \in C^\infty ({\mathbb {R}};[0,1])\) such that \(\chi (t)=1\) for \(|t|\leqslant 1\), and \(\chi (t)=0\) for \(|t|\geqslant 2\), and given a sequence \(\varepsilon _k\downarrow 0\), define \(\chi _k^i(x):=\chi (\varepsilon _k^{-1}|x-a_i|)\) for \(x\in {\mathbb {R}}^2\) and \(i=1,\ldots ,K\). Then set for \(x\in \overline{{\mathbb {D}}}\),

    $$\begin{aligned} \varphi _k(x):=\left( 1-\sum _{i=1}^K\chi _k^i(x)\right) \varphi (x) +\left( \sum _{i=1}^K\chi _k^i(x)\varphi (a_i)\right) {.} \end{aligned}$$

    By construction, for k large enough we have \(\varphi _k=\varphi \) in \(\overline{{\mathbb {D}}}\setminus \bigcup _iD_{2\varepsilon _k}(a_i)\), \(\varphi _k=\varphi (a_i)\) in \(D_{\varepsilon _k}(a_i)\), and \(|\nabla \varphi _k|\leqslant C\) in each \(D_{2\varepsilon _k}(a_i)\) for a constant C depending only on \(\chi \) and the Lipschitz constant of \(\varphi \).

  5. In other words,

    $$\begin{aligned} \int _{{\mathbb {S}}^2_+}f\circ {{\mathfrak {S}}^{-1}} \,\mathrm{d}{\mathcal {H}}^2 =\int _{{\mathbb {D}}}\frac{4 f(z)}{(1+|z|^2)^2}\,\mathrm{d}z \end{aligned}$$

    for every measurable function \(f:{\mathbb {D}}\rightarrow [0,\infty )\).

References

  1. Almgren, F.J.: Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem. Ann. Math. 84, 277–292 (1966)

    MathSciNet  MATH  Google Scholar 

  2. Almgren, F.J., Lieb, E.H.: Singularities of energy minimizing maps from the ball into the sphere: examples, counterexamples, and bounds. Ann. Math. 128, 483–530 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Berlyand, L., Mironescu, P., Rybalko, V., Sandier, E.: Minimax critical points in Ginzburg-Landau problems with semi-stiff boundary conditions: existence and bubbling. Commun. Partial Differ. Eqs. 9, 946–1005 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Bethuel, F.: On the singular set of stationary harmonic maps. Manuscr. Math. 78, 417–443 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Brezis, H., Mironescu, P.: \(H^{1/2}\)-maps with values into the circle: minimal connections, lifting and Ginzburg-Landau equation. Publ. Math. Inst. Hautes Études Sci. 99, 1–115 (2004)

    MATH  Google Scholar 

  6. Brezis, H., Coron, J.M., Lieb, E.H.: Harmonic maps with defects. Commun. Math. Phys. 107, 649–705 (1986)

    MathSciNet  MATH  Google Scholar 

  7. Brezis, H., Nirenberg, L.: Degree theory and BMO, part I: compact manifolds without boundaries. Sel. Math. 1, 197–263 (1995)

    MATH  Google Scholar 

  8. Calabi, E.: Minimal immersions of surfaces in Euclidean spheres. J. Differ. Geom. 1, 111–125 (1967)

    MathSciNet  MATH  Google Scholar 

  9. Da Lio, F.: Compactness and bubble analysis for 1/2-harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 201–224 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Da Lio, F.: Fractional Harmonic Maps, Recent Developments in Nonlocal Theory. De Gruyter, Berlin (2018)

    Google Scholar 

  11. Da Lio, F., Martinazzi, L., Rivière, T.: Blow-up analysis of a nonlocal Liouville-type equation. Anal. PDE 8, 1757–1805 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Da Lio, F., Pigati, A.: Free boundary minimal surfaces: a nonlocal approach, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), preprint arXiv:1712.04683

  13. Da Lio, F., Rivière, T.: Three-term commutator estimates and the regularity of \(\frac{1}{2}\)-harmonic maps into spheres. Anal. PDE 4, 149–190 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Da Lio, F., Rivière, T.: Sub-criticality of non-local Schrödinger systems with anti-symmetric potential and applications to half harmonic maps. Adv. Math. 227, 1300–1348 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Duzaar, F., Grotowski, J.F.: Energy minimizing harmonic maps with an obstacle at the free boundary. Manuscripta Math. 83, 291–314 (1994)

    MathSciNet  MATH  Google Scholar 

  16. Duzaar, F., Grotowski, J.F.: A mixed boundary value problem for energy minimizing harmonic maps. Math. Z. 221, 153–167 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Duzaar, F., Steffen, K.: A partial regularity theorem for harmonic maps at a free boundary. Asymptot. Anal. 2, 299–343 (1989)

    MathSciNet  MATH  Google Scholar 

  18. Duzaar, F., Steffen, K.: An optimal estimate for the singular set of a harmonic map in the free boundary. J. Reine Angew. Math. 401, 157–187 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116, 101–113 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Fatou, P.: Sur les fonctions holomorphes et bornées à l’intérieur d’un cercle. Bull. Soc. Math. France 51, 191–202 (1923)

    MathSciNet  MATH  Google Scholar 

  21. Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Fraser, A.M.: On the free boundary variational problem for minimal disks. Commun. Pure Appl. Math. 53, 931–971 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Fraser, A.M., Schoen, R.: Uniqueness theorems for free boundary minimal disks in space forms. Int. Math. Res. Not. IMRN 17, 8268–8274 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products. Elsevier/Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  25. Hardt, R., Lin, F.H.: Partially constrained boundary conditions with energy minimizing mappings. Commun. Pure Appl. Math. 42, 309–334 (1989)

    MathSciNet  MATH  Google Scholar 

  26. Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris Sér. I Math 312, 591–596 (1991)

    MathSciNet  MATH  Google Scholar 

  27. Herbst, I.W.: Spectral theory of the operator \((p^2+m^2)^{1/2}-Ze^2/r\). Commun. Math. Phys. 53, 285–294 (1977)

    MATH  Google Scholar 

  28. Mazowiecka, K., Schikorra, A.: Fractional div-curl quantities and applications to nonlocal geometric equations. J. Funct. Anal. 275, 1–44 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Millot, V., Pisante, A.: Relaxed energies for \(H^{1/2}\)-maps with values into the circle and measurable weights. Indiana Univ. Math. J. 58, 49–136 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Millot, V., Sire, Y.: On a fractional Ginzburg-Landau equation and \(1/2\)-harmonic maps into spheres. Arch. Ration. Mech. Anal. 215, 125–210 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Millot, V., Sire, Y., Yu, H.: Minimizing fractional harmonic maps on the real line in the supercritical regime. Discrete Contin. Dyn. Syst. Ser. A 38, 6195–6214 (2018)

    MathSciNet  Google Scholar 

  32. Mironescu, P., Pisante, A.: A variational problem with lack of compactness for \(H^{1/2}({\mathbb{S}}^1;{\mathbb{S}}^1)\) maps of prescribed degree. J. Funct. Anal. 217, 249–279 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Moser, R.: Intrinsic semiharmonic maps. J. Geom. Anal. 21, 588–598 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Nitsche, J.C.C.: Stationary partitioning of convex bodies. Arch. Ration. Mech. Anal. 89, 1–19 (1985)

    MathSciNet  MATH  Google Scholar 

  35. Rivière, T.: Everywhere discontinuous harmonic maps into spheres. Acta Math. 175, 197–226 (1995)

    MathSciNet  MATH  Google Scholar 

  36. Rivière, T.: Dense subsets of \(H^{1/2}({\mathbb{S}}^2, {\mathbb{S}}^1)\). Ann. Glob. Anal. Geom. 18, 517–528 (2000)

    MATH  Google Scholar 

  37. Schikorra, A.: Boundary equations and regularity theory for geometric variational systems with Neumann data. Arch. Ration. Mech. Anal. 229, 709–788 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17, 307–335 (1982)

    MathSciNet  MATH  Google Scholar 

  39. Schoen, R., Uhlenbeck, K.: Regularity of minimizing harmonic maps into the sphere. Invent. Math. 78, 89–100 (1984)

    MathSciNet  MATH  Google Scholar 

  40. Simon, L.: Asymptotics for a class of non-linear evolution equations, with applications to geometric problems. Ann. Math. 118, 525–572 (1983)

    MathSciNet  MATH  Google Scholar 

  41. Simon, L.: Theorems on Regularity and Singularity of Energy Minimizing Maps. Birkhauser, Basel (1996)

    MATH  Google Scholar 

  42. Struwe, M.: On a free boundary problem for minimal surfaces. Invent. Math. 75, 547–560 (1984)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

V.M. is supported by the Agence Nationale de la Recherche through the project ANR-14-CE25-0009-01 (MAToS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Millot.

Additional information

Communicated by X. Cabre.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

We provide in this appendix some details about the computations performed in Sect. 5.3.

Lemma A.1

For every \(\varvec{\gamma }\in [0,1)\),

$$\begin{aligned} I(\varvec{\gamma }):=\int _{{\mathbb {D}}} \frac{(1+|z|^2)^2-4z^2_1}{(1-2\varvec{\gamma }z_1+\varvec{\gamma }^2|z|^2)(1+|z|^2)^2} \,\mathrm{d}z=\pi F(\varvec{\gamma }^2) \end{aligned}$$

with

$$\begin{aligned} F(t):=\left( \frac{t^2-10t+1}{(1+t)^4}\right) \log \left( \frac{(1-t)^2}{4}\right) -\frac{t^2+11t-2}{(1+t)^3} \,. \end{aligned}$$

Proof

Write \(I(\varvec{\gamma })=A(\varvec{\gamma }) -4B(\varvec{\gamma })\) with

$$\begin{aligned} A(\varvec{\gamma }):= \int _{{\mathbb {D}}} \frac{1}{(1-2\varvec{\gamma }z_1+\varvec{\gamma }^2|z|^2)}\,\mathrm{d}z \end{aligned}$$

and

$$\begin{aligned} B(\varvec{\gamma }):=\int _{{\mathbb {D}}} \frac{z^2_1}{(1-2\varvec{\gamma }z_1+\varvec{\gamma }^2|z|^2) (1+|z|^2)^2}\,\mathrm{d}z\,. \end{aligned}$$

Using polar coordinates, we further rewrite

$$\begin{aligned} A(\varvec{\gamma })=\int _0^1 M(\varvec{\gamma }r)r \,\mathrm{d}r\quad \text {and}\quad B(\varvec{\gamma })=\int _0^1 \frac{N(\varvec{\gamma }r)r^3}{(1+r^2)^2}\,\mathrm{d}r\,, \end{aligned}$$

where

$$\begin{aligned} M(a):= \int _0^{2\pi } \frac{\mathrm{d}\theta }{(1-2a\cos (\theta )+a^2)^2} \quad \text {and}\quad N(a):=\int _0^{2\pi }\frac{\cos ^2(\theta )}{(1-2a\cos (\theta )+a^2)^2}\,\mathrm{d}\theta \end{aligned}$$

are defined for \(a\in [0,1)\).

Lengthy but elementary computations yield

$$\begin{aligned} M(a)=2\pi \frac{1+a^2}{(1-a^2)^3} \quad \text {and} \quad N(a)=2\pi \left( \frac{1+a^2}{(1-a^2)^3}-\frac{1}{2(1-a^2)}\right) \,. \end{aligned}$$

Then we first obtain

$$\begin{aligned} A(\varvec{\gamma })=2\pi \int _0^1\frac{\varvec{\gamma }^2r^3+r}{(1-\varvec{\gamma }^2r^2)^3}\,\mathrm{d}r=\pi \left[ \frac{r^2}{(1-\varvec{\gamma }^2r^2)^2}\right] ^1_0 =\frac{\pi }{(1-\varvec{\gamma }^2)^2}\,. \end{aligned}$$
(A.1)

Concerning \(B(\varvec{\gamma })\), we can rewrite it as

$$\begin{aligned} B(\varvec{\gamma })=\pi \big (2U(\varvec{\gamma }^2)-V(\varvec{\gamma }^2)\big ) \end{aligned}$$
(A.2)

with

$$\begin{aligned} U(t):=\int _0^1\frac{(1+tr^2)r^3}{(1-tr^2)^3(1+r^2)^2} \,\mathrm{d}r\quad \text {and}\quad V(t):=\int _0^1\frac{r^3}{(1-tr^2)(1+r^2)^2}\,\mathrm{d}r\,. \end{aligned}$$

Once again, elementary computations lead to

$$\begin{aligned} V(t)=\frac{1}{2(1+t)^2}\log \left( \frac{2}{1-t}\right) -\frac{1}{4(1+t)} \end{aligned}$$

and

$$\begin{aligned} U(t)=\left( \frac{t^2-4t+1}{2(1+t)^4}\right) \log \left( \frac{2}{1-t}\right) +\frac{1}{8(1-t)^2}+\frac{1}{2}P(t)\,, \end{aligned}$$

with

$$\begin{aligned} P(t)&:=\frac{1}{4(1-t)} +\frac{1}{4(1+t)} -\frac{3}{4(1+t)^2} +\frac{t^2+2t}{(1+t)^2(1-t)}\\&\quad -\frac{t}{(1+t)(1-t)}-\frac{4t^2}{(1+t)^3(1-t)}-\frac{1-t}{2(1+t)^3}\,. \end{aligned}$$

Therefore,

$$\begin{aligned} 2U(t)-V(t)= \left( \frac{t^2-10t+1}{2(1+t)^4}\right) \log \left( \frac{2}{1-t}\right) +\frac{1}{4(1-t)^2}+P(t)+\frac{1}{4(1+t)}\,. \end{aligned}$$
(A.3)

A direct computation shows that

$$\begin{aligned} P(t)+\frac{1}{4(1+t)}=\frac{t^2+11t-2}{4(1+t)^3}\,. \end{aligned}$$
(A.4)

Gathering (A.1)–(A.2)–(A.3)–(A.4) now leads to \(I(\varvec{\gamma })=\pi F(\varvec{\gamma }^2)\) as announced. \(\square \)

Lemma A.2

Let \({\mathfrak {C}}\) be the Cayley transform (defined in (5.38)). For \(a\in (0,1]\) and \(z\in \overline{{\mathbb {D}}}\), let

$$\begin{aligned} K_a(z):= \frac{|{\mathfrak {C}}^{-1}(z)|^2}{(a^2+2a{\mathfrak {C}}_2^{-1}(z) +|{\mathfrak {C}}^{-1}(z)|^2)^2}\,, \end{aligned}$$

where \({\mathfrak {C}}^{-1}_2\) denotes the imaginary part of \({\mathfrak {C}}^{-1}\). Define for \(\lambda \in (0,1)\),

$$\begin{aligned} J(a,\lambda ):=\frac{1}{2\pi }\int _{{\mathbb {S}}^1} K_a(\lambda \sigma )\,\mathrm{d}\sigma \,. \end{aligned}$$

Then,

$$\begin{aligned} J(a,\lambda )= \frac{(1+t)^4}{16}\left( \frac{(2t^2+1)t^2 \lambda ^6-(6t^2-1)\lambda ^4+t^2\lambda ^2+1}{(1-\lambda ^2 t^2)^3}\right) \text { with }t:=\frac{1-a}{1+a} \end{aligned}$$
(A.5)

for every \(\lambda \in [0,1]\). In addition, \(\lambda \in [0,1]\mapsto J(a,\lambda )\) is increasing for every \(a\in (0,1]\).

Proof

Recalling that

we change variables to obtain

$$\begin{aligned} \frac{1}{2\pi }\int _{{\mathbb {S}}^1}K_a(\lambda z) \,\mathrm{d}{\mathcal {H}}^1=\frac{1}{\pi }\int _{\mathbb {R}}\frac{K_a\big (\lambda {\mathfrak {C}}(x)\big )}{1+x^2}\,\mathrm{d}x\,. \end{aligned}$$

Next we set

$$\begin{aligned} c:=\frac{1-\lambda }{1+\lambda }\in (0,1)\,,\quad A:=\frac{a+c}{1+ac} \,,\quad B:=c^2+\frac{1}{c^2}\,, \end{aligned}$$

to compute

$$\begin{aligned} K_a\big (\lambda {\mathfrak {C}}(x)\big )=\left( \frac{c^2}{(1+ac)^4}\right) \frac{x^4+B x^2+1}{(x^2+A^2)^2}\,. \end{aligned}$$

By Lemma A.4 below, we have

$$\begin{aligned} J(a,\lambda )= \frac{c^2}{(1+ac)^4} \left( \frac{1+A^2}{2A^3} +\frac{B-2}{2A(A+1)^2}\right) \,. \end{aligned}$$

In terms of the variables t and \(\mu :=\lambda ^2\in (0,1)\), we obtain

$$\begin{aligned} J(a,\lambda )=\frac{(1+t)^4}{16}\left( \frac{(2t^2+1)t^2\mu ^3-(6t^2-1) \mu ^2+t^2\mu +1}{(1-\mu t^2)^3}\right) \,, \end{aligned}$$

which is the announced formula. Next, if

$$\begin{aligned} f:\mu \in (0,1)\mapsto \frac{(2t^2+1)t^2\mu ^3 -(6t^2-1)\mu ^2+t^2\mu +1}{(1-\mu t^2)^3}\,, \end{aligned}$$

we have

$$\begin{aligned} f^\prime (\mu )= \frac{4t^2(1-\mu )^2+2\mu (1-t^2)^2}{(1-\mu t^2)^4}>0\,, \end{aligned}$$

which shows that \(\lambda \mapsto J(a,\lambda )\) is indeed increasing for every \(a\in (0,1)\). \(\square \)

Remark A.3

Note that the function \(J(a,\lambda )\) defined in (A.5) can be rewritten as

$$\begin{aligned} J(a,\lambda )=\frac{(1+t)^4}{32}\left( \frac{(1-\lambda ^2)^2}{(1+\lambda t)(1-\lambda t)^3}+\frac{(1-\lambda ^2)^2}{(1+\lambda t)^3(1-\lambda t)} +\frac{4\lambda ^2}{1-\lambda ^2t^2}\right) \,. \end{aligned}$$

From this formula, one easily determines the behavior of J as \(a\sim 0\) and \(\lambda \sim 1\).

Lemma A.4

For \(A,B>0\), we have

$$\begin{aligned} \frac{1}{\pi }\int _{\mathbb {R}}\frac{x^4+Bx^2+1}{(1+x^2)(x^2+A^2)^2} \,\mathrm{d}x=\frac{1+A^2}{2A^3}+\frac{B-2}{2A(A+1)^2}\,. \end{aligned}$$
(A.6)

Proof

Write \(X:=x^2\), and observe that

$$\begin{aligned} \frac{X^2+BX+1}{(X+1)(X+A^2)^2}&=\frac{2-B}{(1-A^2)^2}\frac{1}{X+1}\\&\quad + \left( 1+\frac{B-2}{(1-A^2)^2}\right) \frac{1}{X+A^2}\\&\quad +\left( (1-A^2)+(2-B)\frac{A^2}{1-A^2}\right) \frac{1}{(X+A^2)^2} \,. \end{aligned}$$

On the other hand,

$$\begin{aligned} \frac{1}{\pi }\int _{\mathbb {R}}\frac{\mathrm{d}x}{1+x^2}=1\,,\quad \frac{1}{\pi } \int _{\mathbb {R}}\frac{\mathrm{d}x}{x^2+A^2}=\frac{1}{A}\,,\quad \frac{1}{\pi } \int _{\mathbb {R}}\frac{\mathrm{d}x}{(x^2+A^2)^2}=\frac{1}{2A^3}\,, \end{aligned}$$

and (A.6) follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millot, V., Pegon, M. Minimizing 1/2-harmonic maps into spheres. Calc. Var. 59, 55 (2020). https://doi.org/10.1007/s00526-020-1704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-1704-z

Mathematics Subject Classification

Navigation