Skip to main content
Log in

Geometry and interior nodal sets of Steklov eigenfunctions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate the geometric properties of Steklov eigenfunctions in smooth manifolds. We derive the refined doubling estimates and Bernstein’s inequalities. For the real analytic manifolds, we are able to obtain the sharp upper bound for the measure of interior nodal sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N., Krzywicki, A., Szarski, J.: A unique continuation theorem for exterior differential forms on Riemannian manifolds. Arkiv för Matematik 34, 417–453 (1963)

    MathSciNet  MATH  Google Scholar 

  2. Bakri, L., Casteras, J.B.: Quantitative uniqueness for Schrödinger operator with regular potentials. Math. Methods Appl. Sci. 37, 1992–2008 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellova, K., Lin, F.-H.: Nodal sets of Steklov eigenfunctions. Calc. Var. PDE 54, 2239–2268 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brüning, J.: Über Knoten von Eigenfunktionen des Laplace–Beltrami-operators. Math. Z. 158, 15–21 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chanillo, S., Muckenhoupt, B.: Nodal geometry on Riemannian manifolds. J. Differ. Geom 34(1), 85–91 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colding, T.H., Minicozzi II, W.P.: Lower bounds for nodal sets of eigenfunctions. Comm. Math. Phys. 306, 777–784 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, R.-T.: Nodal sets of eigenfunctions on Riemann surfaces. J. Differ. Geom. 36, 493–506 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93, 161–183 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Donnelly, H., Fefferman, C.: Nodal sets for eigenfunctions of the Laplacian on surfaces. J. Am. Math. Soc. 3(2), 333–353 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions: Riemannian manifolds with boundary. In: Cetera, Et (ed.) Analysis, pp. 251–262. Academic Press, Boston (1990)

    Google Scholar 

  11. Donnelly, H., Fefferman, C.: Growth and Geometry of Eigenfunctions of the Laplacian. Analysis and Partial Differential Equations. Lecture Notes in Pure and Applied Mathematics, pp. 635–655. Dekker, New York (1990)

    MATH  Google Scholar 

  12. Georgiev, B., Roy-Fortin, G.: Polynomial upper bound on interior Steklov nodal sets. J. Spectr. Theory 9(3), 897–919 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Girouard, A., Polterovich, I.: Spectral geometry of the Steklov problem. J. Spectr. Theory 7(2), 321–359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, Q.: Nodal sets of harmonic functions. Pure Appl. Math. Q. 3(3), 647–688 (2007). part 2

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, Q., Lin, F.-H.: Nodal Sets of Solutions of Elliptic Differential Equations, book in preparation (online at http://www.nd.edu/qhan/nodal.pdf)

  16. Han, X., Lu, G.: A geometric covering lemma and nodal sets of eigenfunctions. Math. Res. Lett. 18(2), 337–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hardt, R., Simon, L.: Nodal sets for solutions of ellipitc equations. J. Differ. Geom. 30, 505–522 (1989)

    Article  MATH  Google Scholar 

  18. Hezari, H., Sogge, C.D.: A natural lower bound for the size of nodal sets. Anal. PDE. 5(5), 1133–1137 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, F.-H.: Nodal sets of solutions of elliptic equations of elliptic and parabolic equations. Comm. Pure Appl Math. 44, 287–308 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Logunov, A.: Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure. Ann. Math. 187, 221–239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Logunov, A.: Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture. Ann. Math. 187, 241–262 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Logunov, A., Malinnikova, E.: Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three, 50 years with Hardy spaces, 333–344, Oper. Theory Adv. Appl., 261, Birkhäuser/Springer, Cham, (2018)

  23. Logunov, A., Malinnikova, E.: Review of Yau’s conjecture on zero sets of Laplace eigenfunctions, Current Developments in Mathematics, Volume 2018, pp. 179–212

  24. Lu, G.: Covering lemmas and an application to nodal geometry on Riemannian manifolds. Proc. Am. Math. Soc 117(4), 971–978 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mangoubi, D.: A remark on recent lower bounds for nodal sets. Comm. Partial Differ. Equ. 36(12), 2208–2212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Morrey, C.B., Nirenberg, L.: On the analyticity of the solutions of linear elliptic systems of partial differential equations. Commun. Pure Appl. Math. 10, 271–290 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  27. Polterovich, I., Sher, D., Toth, J.: Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces. J. Reine Angew. Math. 754, 17–47 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Steinerberger, S.: Lower bounds on nodal sets of eigenfunctions via the heat flow. Comm. Partial Differ. Equ. 39(12), 2240–2261 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sogge, C.D., Wang, X., Zhu, J.: Lower bounds for interior nodal sets of Steklov eigenfunctions. Proc. Am. Math. Soc. 144(11), 4715–4722 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sogge, C.D., Zelditch, S.: Lower bounds on the Hausdorff measure of nodal sets. Math. Res. Lett. 18, 25–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sogge, C.D., Zelditch, S.: Lower bounds on the Hausdorff measure of nodal sets II. Math. Res. Lett. 19(6), 1361–1364 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, X., Zhu, J.: A lower bound for the nodal sets of Steklov eigenfunctions. Math. Res. Lett. 22(4), 1243–1253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zelditch, S.: Local and global analysis of eigenfunctions on Riemannian manifolds. In: Handbook of Geometric Analysis, in: Adv. Lect. Math. (ALM), vol. 7(1), International Press, Somerville, pp. 545-658 (2008)

  34. Zelditch, S.: Measure of nodal sets of analytic steklov eigenfunctions. Math. Res. Lett. 22(6), 1821–1842 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu, J.: Doubling property and vanishing order of Steklov eigenfunctions. Comm. Partial Differ. Equ. 40(8), 1498–1520 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhu, J.: Interior nodal sets of Steklov eigenfunctions on surfaces. Anal. PDE 9(4), 859–880 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

It is my pleasure to thank Professor Christopher D. Sogge, Joel Spruck, and Steve Zelditch for helpful discussions about the topic of eigenfunctions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuyi Zhu.

Additional information

Communicated by F.H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research is partially supported by the NSF Grant DMS 1656845.

Appendix

Appendix

In this section, we provide the proof of Lemma 1 and some arguments stated in the proof Proposition 2. Recall that

$$\begin{aligned} \Vert {\mathcal {L}}_\beta (v)\Vert ^2_\phi \ge \frac{1}{2}{\mathcal {A}}-{\mathcal {B}}, \end{aligned}$$

where

$$\begin{aligned} \mathcal {L}_\beta (v)= & {} \partial ^2_t v+\big (2\beta \phi '+e^{2t} {\bar{b}}_t+(n-2)+\partial _t \ln \sqrt{\gamma }\big )\partial _t v+ e^{2t} \bar{b}_i\partial _i v \nonumber \\&+\big (\beta ^2\phi '^2+\beta \phi '{{{\bar{b}}}}_t e^{2t}+\beta \phi ''+(n-2)\beta \phi '+\beta \partial _t \ln \sqrt{\gamma }\phi '\big ) v+\triangle _{\omega } v+ e^{2t} {{\bar{q}}} v \end{aligned}$$
(4.1)

and

$$\begin{aligned} {\mathcal {A}}=\Vert \partial ^2_t v+ & {} \triangle _{\omega } v +\big (2\beta \phi '+e^{2t} {\bar{b}}_t\big )\partial _t v+ e^{2t} \bar{b}_i\partial _i v \nonumber \\+ & {} \big (\beta ^2\phi '^2+\beta \phi '{{{\bar{b}}}}_t e^{2t}+(n-2)\beta \phi '+ e^{2t} {{\bar{q}}} \big ) v\Vert ^2_{\phi } \end{aligned}$$
(4.2)

and

$$\begin{aligned} {\mathcal {B}}=\Vert \beta \phi '' v+\beta \partial _t \ln \sqrt{\gamma } \phi ' v+(n-2)\partial _t v+\partial _t \ln \sqrt{\gamma }\partial _t v\Vert ^2_{\phi }. \end{aligned}$$
(4.3)

Modifying the arguments in [2] and [35], we can obtain the following lemma, which verifies the proof of (2.18) and (2.19) in Proposition 2.

Lemma 3

There holds that

$$\begin{aligned} \Vert {\mathcal {L}}_\beta (v)\Vert ^2_\phi&\ge \frac{1}{4}{\mathcal {A}} \nonumber \\&\ge C\beta ^3\int |\phi ''||v|^2 \phi '^{-3}\sqrt{\gamma }\,dt d \omega +C\beta \int |\phi ''||D_\omega v|^2 \phi '^{-3}\sqrt{\gamma }\,dt d \omega \nonumber \\&+C\beta \int |\partial _t v|^2 \phi '^{-3}\sqrt{\gamma }\,dt d \omega . \end{aligned}$$
(4.4)

Proof

We decompose \({\mathcal {A}}\) as

$$\begin{aligned} {\mathcal {A}}={\mathcal {A}}'_1+{\mathcal {A}}'_2+{\mathcal {A}}'_3, \end{aligned}$$

where

$$\begin{aligned} {\mathcal {A}}'_1=\Vert \partial ^2_t v +\big (\beta ^2\phi '^2+\beta \phi '{{{\bar{b}}}}_t e^{2t}+(n-2)\beta \phi '+ e^{2t} {{\bar{q}}} \big ) v+ \triangle _{\omega } v\Vert ^2_{\phi } \end{aligned}$$

and

$$\begin{aligned} {\mathcal {A}}'_2=\Vert \big (2\beta \phi '+e^{2t} {\bar{b}}_t\big )\partial _t v+e^{2t}{\bar{b}}_i\partial _i v\Vert ^2_{\phi } \end{aligned}$$

and

$$\begin{aligned} {\mathcal {A}}'_3=2< \partial ^2_t v+ \big (\beta ^2\phi '^2+\beta \phi '{{{\bar{b}}}}_t e^{2t}+(n-2)\beta \phi '+ e^{2t} {{\bar{q}}} \big ) v+\triangle _\omega v,\\ \big (2\beta \phi '+e^{2t} {{{\bar{b}}}}_t\big )\partial _t v+e^{2t}{\bar{b}}_i\partial _i v>_\phi . \end{aligned}$$

We first compute \({\mathcal {A}}'_1\). Let \({\hat{\alpha }}\) be some small positive constant. Recall that \(\phi (t)=t-e^{\epsilon t}\). Since \(|\phi ^{''}|\le 1\) and \(\beta \) is large enough, it is true that

$$\begin{aligned} {\mathcal {A}}'_1\ge \frac{{\hat{\alpha }}}{\beta } {\mathcal {A}}^{''}_1, \end{aligned}$$
(4.5)

where \({\mathcal {A}}^{''}_1\) is given by

$$\begin{aligned} {\mathcal {A}}^{''}_1=\left\| \sqrt{|\phi ^{''}|}[\partial ^2_t v +\big (\beta ^2\phi '^2+\beta \phi '{{{\bar{b}}}}_t e^{2t}+(n-2)\beta \phi '+ e^{2t} {{\bar{q}}} \big ) v+ \triangle _{\omega } v ]\right\| _\phi ^2. \end{aligned}$$

We split \({\mathcal {A}}^{''}_1\) into three parts:

$$\begin{aligned} {\mathcal {A}}^{''}_1={\mathcal {K}}_1+{\mathcal {K}}_2+{\mathcal {K}}_3, \end{aligned}$$
(4.6)

where

$$\begin{aligned} {\mathcal {K}}_1=\left\| \sqrt{|\phi ^{''}|}\big (\partial ^2_t v+\triangle _{\omega } v\big )\right\| _\phi ^2 \end{aligned}$$

and

$$\begin{aligned} {\mathcal {K}}_2=\left\| \sqrt{|\phi ^{''}|}\big (\beta ^2 \phi '^2+ \beta \phi '{{{\bar{b}}}}_t e^{2t}+(n-2)\beta \phi '+ e^{2t} {{\bar{q}}} \big ) v \right\| _\phi ^2 \end{aligned}$$

and

$$\begin{aligned} {\mathcal {K}}_3=2\bigg < |\phi ^{''}|(\partial ^2_t v+\triangle _{\omega } v), \ \big (\beta ^2 \phi '^2+ \beta \phi '{{{\bar{b}}}}_t e^{2t}+(n-2)\beta \phi '+ e^{2t} {{\bar{q}}} \big ) v \bigg >_\phi . \end{aligned}$$

The expression \({\mathcal {K}}_1\) is considered to be a nonnegative term. We estimate \({\mathcal {K}}_2\). By the triangle inequality,

$$\begin{aligned} {\mathcal {K}}_2\ge \beta ^4 \left\| \sqrt{|\phi ^{''}|} \phi ' v\right\| _\phi ^2- \left\| \sqrt{|\phi ^{''}|}\big (\beta \phi '{{{\bar{b}}}}_t e^{2t}+(n-2)\beta \phi '+ e^{2t} {{\bar{q}}} \big ) v \right\| _\phi ^2. \end{aligned}$$
(4.7)

Using the fact that \(\beta >C(1+\Vert {{\bar{b}}}\Vert _{W^{1, \infty }}+\Vert \bar{q}\Vert ^{1/2}_{W^{1, \infty }})\), we have

$$\begin{aligned} \left\| \sqrt{|\phi ^{''}|}\big (\beta \phi '{{{\bar{b}}}}_t e^{2t}+(n-2)\beta \phi '+ e^{2t} {{\bar{q}}} \big ) v \right\| _\phi ^2&\le C\beta ^4 \left\| \sqrt{|\phi ^{''}|} e^t v \right\| _\phi ^2 \nonumber \\&+ C\beta ^2 \left\| \sqrt{|\phi ^{''}|} v \right\| _\phi ^2. \end{aligned}$$
(4.8)

Since t is close to negative infinity and then \(\phi '\) is close to 1, from (4.7) and (4.8), we obtain that

$$\begin{aligned} {\mathcal {K}}_2\ge C\beta ^4 \left\| \sqrt{|\phi ^{''}|} v \right\| _\phi ^2, \end{aligned}$$
(4.9)

where we also used the fact that \(\phi '\) is close to 1. We derive a lower bound for \({\mathcal {K}}_3\). Integration by parts shows that

$$\begin{aligned} {\mathcal {K}}_3&=-2\int |\phi ^{''}||\partial _t v|^2 \big (\beta ^2\phi '^2+ \beta \phi '{{{\bar{b}}}}_t e^{2t}+(n-2)\beta \phi '+ e^{2t} {{\bar{q}}} \big ) \phi '^{-3} \sqrt{\gamma } \ dtd\omega \nonumber \\&-2 \int \partial _t v v \partial _t\big [|\phi ^{''}|\big (\beta ^2\phi '^2+\beta \phi '{{{\bar{b}}}}_t e^{2t}+(n-2)\beta \phi '+ e^{2t} {{\bar{q}}} \big ) \phi '^{-3} \sqrt{\gamma } \big ]\ dtd\omega \nonumber \\&-2\int |\phi ^{''}| |D_\omega v|^2 \big (\beta ^2\phi '^2+\beta \phi '{{{\bar{b}}}}_t e^{2t}+(n-2)\beta \phi '+ e^{2t} {{\bar{q}}} \big ) \phi '^{-3} \sqrt{\gamma } dtd\omega \nonumber \\&-2 \int \beta |\phi ^{''}|\phi ' \gamma ^{ij}\partial _i v \partial _j{{{\bar{b}}}}_t e^{2t} \phi '^{-3} \sqrt{\gamma } dtd\omega \nonumber \\&-2 \int |\phi ^{''}| \gamma ^{ij}\partial _i v\partial _j {\bar{q}} e^{2t} v \phi '^{-3} \sqrt{\gamma } dtd\omega . \end{aligned}$$
(4.10)

By the Cauchy-Schwartz inequality and the condition that \(\beta >C(1+\Vert {{\bar{b}}}\Vert _{W^{1, \infty }}+\Vert \bar{q}\Vert ^{1/2}_{W^{1, \infty }})\), we arrive at

$$\begin{aligned} {\mathcal {K}}_3\ge -C\beta ^2 \int |\phi ^{''}|( |\partial _t v|^2+|D_\omega v|^2+v^2) \phi '^{-3} \sqrt{\gamma } dtd\omega . \end{aligned}$$
(4.11)

Since \({\mathcal {K}}_1\) is nonnegative, the combination of (4.6), (4.9) and (4.11) yields that

$$\begin{aligned} {\mathcal {A}}^{''}_1&\ge C\beta ^4 \left\| \sqrt{|\phi ^{''}|} v \right\| _\phi ^2- C\beta ^2 \left\| \sqrt{|\phi ^{''}|} \partial _t v \right\| _\phi ^2 \nonumber \\&-C\beta ^2 \left\| \sqrt{|\phi ^{''}|} |D_\omega v| \right\| _\phi ^2. \end{aligned}$$
(4.12)

From (4.5), it follows that

$$\begin{aligned} {\mathcal {A}}^{'}_1&\ge C{\hat{\alpha }}\beta ^3 \left\| \sqrt{|\phi ^{''}|} v \right\| _\phi ^2- C{\hat{\alpha }}\beta \left\| \sqrt{|\phi ^{''}|} \partial _t v \right\| _\phi ^2 \nonumber \\&-C{\hat{\alpha }} \beta \left\| \sqrt{|\phi ^{''}|} |D_\omega v| \right\| _\phi ^2. \end{aligned}$$
(4.13)

Recall that

$$\begin{aligned} {\mathcal {A}}'_2=\Vert \big (2\beta \phi '+e^{2t} {\bar{b}}_t\big )\partial _t v+e^{2t}{\bar{b}}_i\partial _i v\Vert ^2_{\phi }. \end{aligned}$$

By the triangle inequality, one has

$$\begin{aligned} {\mathcal {A}}'_2\ge 2\beta ^2 \Vert \phi '\partial _t v\Vert ^2_{\phi }- \Vert e^{2t} {\bar{b}}_t \partial _t v+e^{2t}{\bar{b}}_i\partial _i v\Vert ^2_{\phi }. \end{aligned}$$

It is obvious that

$$\begin{aligned} {\mathcal {A}}'_2\ge \frac{1}{\beta }{\mathcal {A}}'_2. \end{aligned}$$

From the assumption that \(\beta >C(1+\Vert {{\bar{b}}}\Vert _{W^{1, \infty }}+\Vert \bar{q}\Vert ^{1/2}_{W^{1, \infty }})\), we obtain that

$$\begin{aligned} {\mathcal {A}}'_2&\ge C\beta \Vert \phi '\partial _t v\Vert ^2_{\phi } - C\beta \Vert e^{t}\partial _t v\Vert ^2_{\phi } - C\beta \Vert e^{t}|D_\omega v|\Vert ^2_{\phi }\nonumber \\&\ge C\beta \Vert \phi '\partial _t v\Vert ^2_{\phi }-C\beta \Vert e^{t}|D_\omega v|\Vert ^2_{\phi }. \end{aligned}$$
(4.14)

For the inner product \({\mathcal {A}}'_3\), using the arguments of integration by parts, since \(e^t \ll 1\) as \(t<T_0\) and \(|T_0|\) is large enough, we can show a lower bound of \({\mathcal {A}}'_3\),

$$\begin{aligned} {\mathcal {A}}'_3&\ge C\beta \left\| \sqrt{|\phi ^{''}|} |D_\omega v| \right\| _\phi ^2- C\beta ^3 \left\| e^t v\right\| _\phi ^2 -C\beta \left\| \sqrt{|\phi ^{''}|}\partial _t v \right\| _\phi ^2 \nonumber \\&-C\beta ^2\left\| \sqrt{|\phi ^{''}|} v \right\| _\phi ^2. \end{aligned}$$
(4.15)

Recall that \( {\mathcal {A}}={\mathcal {A}}'_1+{\mathcal {A}}'_2 +{\mathcal {A}}'_3 \). From (4.13), (4.14) and (4.15), it follows that

$$\begin{aligned} {\mathcal {A}}&\ge C{\hat{\alpha }} \beta ^3 \int |\phi ^{''}|v^2 \phi '^{-3} \sqrt{\gamma } dtd\omega +C\beta \int |\partial _t v|^2 \phi '^{-3} \sqrt{\gamma } \nonumber \\&+ C\beta \int |\phi ^{''}| |D_\omega v|^2 \phi '^{-3} \sqrt{\gamma } dtd\omega - C\beta ^2 \int |\phi ^{''}| v^2 \phi '^{-3} \sqrt{\gamma } dtd\omega \nonumber \\&-C\beta ^3 \int e^{2t} v^2 \phi '^{-3} \sqrt{\gamma } dtd\omega - C\beta \int |\phi ^{''}| |\partial _t v|^2 \phi '^{-3} \sqrt{\gamma } dtd\omega \nonumber \\&-C{\hat{\alpha }}\beta \int |\phi ^{''}| |D_\omega v|^2 \phi '^{-3} \sqrt{\gamma } dtd\omega - C\beta \int e^{2t} |D_\omega v|^2 \phi '^{-3} \sqrt{\gamma } dtd\omega . \end{aligned}$$
(4.16)

If we choose \({\hat{\alpha }}\) to be appropriately small and take the fact \(|\phi ^{''}|>e^t\) into account, we obtain that

$$\begin{aligned} C{\mathcal {A}}\ge & {} \beta ^3\int |\phi ''||v|^2 \phi '^{-3}\sqrt{\gamma }\,dt d \omega +\beta \int |\phi ''||D_\omega v|^2 \phi '^{-3}\sqrt{\gamma }\,dt d \omega \nonumber \\&+\beta \int |\partial _t v|^2 \phi '^{-3}\sqrt{\gamma }\,dt d \omega . \end{aligned}$$
(4.17)

Now we show \({\mathcal {B}}\) can be absorbed into \({\mathcal {A}}\) for large \(|T_0|\) and large \(\beta \). Since

$$\begin{aligned} |\partial _t \ln \sqrt{\gamma }|\le C e^t\le |\phi ^{''}|, \end{aligned}$$

then

$$\begin{aligned} {\mathcal {B}}&=\Vert \beta \phi ''v+\beta \partial _t \ln \sqrt{\gamma } \phi ' v+(n-2)\partial _t v+\partial _t \ln \sqrt{\gamma }\partial _t v\Vert ^2_{\phi } \nonumber \\&\le \beta ^2 \int |\phi ''| v^2 \phi '^{-3} \sqrt{\gamma } dt d \omega + C\int |\partial _t v|^2 e^{2t} \phi '^{-3} \sqrt{\gamma } dt d \omega . \end{aligned}$$
(4.18)

Thus, the right hand side of (4.18) can be incorporated by the right hand side of (4.17). Hence the proof of the lemma is arrived. \(\square \)

Proof of Lemma 1

If we recall that \(u=e^{-\beta \varphi (x)} v\), the proof of Lemma 3 just implies Lemma 1 stated in Sect. 2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J. Geometry and interior nodal sets of Steklov eigenfunctions . Calc. Var. 59, 150 (2020). https://doi.org/10.1007/s00526-020-01815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01815-4

Mathematics Subject Classification

Navigation