Skip to main content
Log in

A proof of the Caffarelli contraction theorem via entropic regularization

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We give a new proof of the Caffarelli contraction theorem, which states that the Brenier optimal transport map sending the standard Gaussian measure onto a uniformly log-concave probability measure is Lipschitz. The proof combines a recent variational characterization of Lipschitz transport map by the second author and Juillet with a convexity property of optimizers in the dual formulation of the entropy-regularized optimal transport (or Schrödinger) problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics, 2nd edn. ETH Zürich, Birkhäuser Verlag, Basel (2008)

  2. Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37(2), A1111–A1138 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L.A.: Monotonicity properties of optimal transportation and the FKG and related inequalities. Commun. Math. Phys. 214(3), 547–563 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L.A.: Erratum: “Monotonicity of optimal transportation and the FKG and related inequalities” [Commun. Math. Phys. 214(3), 547–563 (2000)]. Commun. Math. Phys. 225(2), 449–450 (2002)

    Article  Google Scholar 

  5. Carlier, G., Duval, V., Peyré, G., Schmitzer, B.: Convergence of entropic schemes for optimal transport and gradient flows. SIAM J. Math. Anal. 49(2), 1385–1418 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Georgiou, T., Pavon, M.: Entropic and displacement interpolation: a computational approach using the Hilbert metric. SIAM J. Math. Anal. 76(6), 2375–2396 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colombo, M., Figalli, A., Jhaveri, Y.: Lipschitz changes of variables between perturbations of log-concave measures. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17(4), 1491–1519 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Conforti, G.: A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost. Probab. Theory Relat. Fields 174(1–2), 1–47 (2019)

    Article  MATH  Google Scholar 

  9. Conforti, G., Ripani, L.: Around the entropic Talagrand inequality. arXiv preprint arXiv:1809.02062 (2018)

  10. Cordero-Erausquin, D.: Some applications of mass transport to Gaussian-type inequalities. Arch. Ration. Mech. Anal. 161(3), 257–269 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Courtade, T.A., Fathi, M., Pananjady, A.: Quantitative stability of the entropy power inequality. IEEE Trans. Inf. Theory 64(8), 5691–5703 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Csiszár, I.: \(I\)-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3, 146–158 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. Adv. Neural Inf. Process. Syst. (NIPS) 2013(26), 2292–2300 (2013)

    Google Scholar 

  14. De Philippis, G., Figalli, A.: Rigidity and stability of Caffarelli’s log-concave perturbation theorem. Nonlinear Anal. 154, 59–70 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Essid, M., Pavon, M.: Traversing the Schrödinger bridge strait: Robert Fortet’s marvelous proof redux. J. Optim. Theory Appl. 181(1), 23–60 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fortet, R.: Résolution d’un système d’équations de M. Schrödinger. J. Math. Pures Appl. 19, 83–105 (1940)

    MathSciNet  MATH  Google Scholar 

  17. Franklin, J., Lorenz, J.: On the scaling of multidimensional matrices. Linear Algebra Appl. 114(115), 717–735 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Genevay, A.: Entropy-regularized optimal transport for machine learning. Ph.D. Thesis, Université Paris-Dauphine, (2019)

  19. Gentil, I., Léonard, C., Ripani, L.: About the analogy between optimal transport and minimal entropy. Ann. Fac. Sci. Toulouse Math. (6) 26(3), 569–601 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gentil, I., Léonard, C., Ripani, L., Tamanini, L.: An entropic interpolation proof of the HWI inequality. Stoch. Process. Appl. 130, 907–923 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gigli, N., Tamanini, L.: Benamou–Brenier and duality formulas for the entropic cost on \({RCD}^*(k,n)\) spaces. arxiv preprint (2018)

  22. Gozlan, N., Madiman, M., Roberto, C., Samson, P.M.: Deviation inequalities for convex functions motivated by the Talagrand conjecture. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 457 (2017), no. Veroyatnost’ i Statistika. 25, 168–182 (2017)

  23. Gozlan, N., Juillet, N.: On a mixture of Brenier and Strassen theorems. Proc. Lond. Math. Soc. (3) 120(3), 434–463 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guionnet, A., Shlyakhtenko, D.: Free monotone transport. Invent. Math. 197(3), 613–661 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hargé, G.: A particular case of correlation inequality for the Gaussian measure. Ann. Probab. 27(4), 1939–1951 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Hargé, G.: Inequalities for the Gaussian measure and an application to Wiener space. C. R. Acad. Sci. Paris Sér. I Math. 333(8), 791–794 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren Text Editions. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  28. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 305, Springer, Berlin (1993)

  29. Kim, Y.-H., Milman, E.: A generalization of Caffarelli’s contraction theorem via (reverse) heat flow. Math. Ann. 354(3), 827–862 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Klartag, B.: Poincaré inequalities and moment maps. Ann. Fac. Sci. Toulouse Math. 22(1), 1–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kolesnikov, A.V.: Global Hölder estimates for optimal transportation. Mat. Zametki 88(5), 708–728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kolesnikov, A.V.: On Sobolev regularity of mass transport and transportation inequalities. Theory Probab. Appl. 57(2), 243–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Léonard, C.: From the Schrödinger problem to the Monge–Kantorovich problem. J. Funct. Anal. 262(4), 1879–1920 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Léonard, C.: A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. 34(4), 1533–1574 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Léonard, C.: Revisiting Fortet’s proof of existence of a solution to the Schrödinger system. ArXiv preprint arXiv:1904.13211 (2019)

  36. Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of \(h\)-path processes. Probab. Theory Relat. Fields 129(2), 245–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Milman, E.: On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math. 177(1), 1–43 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Milman, E.: Spectral estimates, contractions and hypercontractivity. J. Spectr. Theory 8(2), 669–714 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Prékopa, A.: On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34, 335–343 (1973)

    MathSciNet  MATH  Google Scholar 

  40. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton (1970)

    Google Scholar 

  41. Schrödinger, E.: Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique. Ann. Inst. H. Poincaré 2(4), 269–310 (1932)

    MathSciNet  MATH  Google Scholar 

  42. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  43. Villani, C.: Optimal Transport. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer, Berlin (2009)

    Google Scholar 

Download references

Acknowledgements

MF and NG were supported by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX- 0002-02. MF and MP were supported by Projects MESA (ANR-18-CE40-006) and EFI (ANR-17-CE40-0030) of the French National Research Agency (ANR). NG is supported by a grant of the Simone and Cino Del Duca Foundation. We thank Christian Léonard for pointing out to us Fortet’s work and sharing a preliminary version of [35] explaining it, Gabriel Peyré for his lectures on numerical optimal transport in March 2019 in Toulouse, and Franck Barthe, Nicolas Juillet and Michel Ledoux for useful discussions. We also thank an anonymous referee for his valuable comments, and for a suggestion that simplified the proof of Theorem 15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Fathi.

Additional information

Communicated by X. Cabre.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, M., Gozlan, N. & Prod’homme, M. A proof of the Caffarelli contraction theorem via entropic regularization. Calc. Var. 59, 96 (2020). https://doi.org/10.1007/s00526-020-01754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01754-0

Mathematics Subject Classification

Navigation