Skip to main content
Log in

Quasilinear problems under local Landesman–Lazer condition

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper presents results on the existence and multiplicity of solutions for quasilinear problems in bounded domains involving the p-Laplacian operator under local versions of the Landesman–Lazer condition. The main results do not require any growth restriction at infinity on the nonlinear term which may change sign. The existence of solutions is established by combining variational methods, truncation arguments and approximation techniques based on a compactness result for the inverse of the p-Laplacian operator. These results also establish the intervals of the projection of the solution on the direction of the first eigenfunction of the p-Laplacian operator. This fact is used to provide the existence of multiple solutions when the local Landesman–Lazer condition is satisfied on disjoint intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alama, S., Del Pino, M.: Solutions of elliptic equations with indefinite nonlinearities via morse theory and linkings. Ann. Inst. H. Poincaré Anal. Non Linéaire 13, 95–115 (1996)

    Article  MathSciNet  Google Scholar 

  2. Alama, S., Tarantello, G.: On semilinear elliptic equations with indefinite nonlinearities. Calc. Var. Partial Differ. Equ. 1, 439–475 (1993)

    Article  MathSciNet  Google Scholar 

  3. Alama, S., Tarantello, G.: Elliptic problems with nonlinearities indefinite in sign. J. Funct. Anal. 141, 159–215 (1996)

    Article  MathSciNet  Google Scholar 

  4. Ambrosetti, A., Arcoya, D.: On a quasilinear problem at strong resonance. Topol. Methods Nonlinear Anal. 6, 255–264 (1995)

    Article  MathSciNet  Google Scholar 

  5. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  6. Anane, A.: Simplicité et isolation de la première valeur du p-Laplacien avec: poids. C. R. Acad. Sci. Paris 305, 725–728 (1987)

    MathSciNet  MATH  Google Scholar 

  7. Anane, A., Gossez, J.P.: Strongly nonlinear elliptic problems near resonance, a variational approach Comm. Partial Differ. Equ. 15, 1141–1159 (1990)

    Article  Google Scholar 

  8. Arcoya, D., Carmona, J., Leonori, T., Martínez-Aparicio, P.J., Orsina, L., Pettita, F.: Existence and nonexistence of solutions for singular quadratic quasilinear equations. J. Differ. Equ. 246, 4006–4042 (2009)

    Article  MathSciNet  Google Scholar 

  9. Arcoya, D., Gámez, J.L.: Bifurcation theory and related problems: anti-maximum principle and resonance. Comm. Partial Differ. Equ. 26, 1879–19011 (2001)

    Article  MathSciNet  Google Scholar 

  10. Arcoya, D., Orsina, L.: Landesman–Lazer conditions and quasilinear elliptic problems. Nonlinear Anal. 28, 1623–1632 (1997)

    Article  MathSciNet  Google Scholar 

  11. Bartolo, P., Benci, V., Fortunato, D.: Abstract criticl point theorems and application to some nonlinear problems with strong resonance at infinity. Nonlinear Anal. 7, 981–1012 (1983)

    Article  MathSciNet  Google Scholar 

  12. Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L.: Superlinear indefinite elliptic problems and nonlinear Liouville theorems. Topol. Methods Nonlinear Anal. 4, 59–78 (1994)

    Article  MathSciNet  Google Scholar 

  13. Boccardo, L., Drábek, P., Kučera, M.: Landesman–Lazer conitions for strongly nonlinear boundary value problems. Comment. Math. Univ. Carol. 30, 411–427 (1989)

    MATH  Google Scholar 

  14. Castro, A.: Reduction Methods via Minimax. First Latin American School of Differential Equations (São Paulo, Brazil, 1981), Lecture Notes in Mathematics, Vol. 957, pp. 1–20. Springer, Berlin (1982)

  15. Castro, A., Lazer, A.C.: Critical point theory and the number of solutions of a nonlinear Dirichlet problem. Ann. Mat. Pura Appl. 120, 113–137 (1979)

    Article  MathSciNet  Google Scholar 

  16. Chang, K.C., Jiang, M.Y.: Dirichlet problem with indefinite nonlinearities. Calc. Var. Partial Differ. Equ. 20, 257–282 (2004)

    Article  MathSciNet  Google Scholar 

  17. Costa, D.G., Tehrani, H.: Existence of positive solutions for a class of indefinite elliptic problems in \(\mathbb{R}^N\). Calc. Var. Partial Differ. Equ. 13, 159–189 (2001)

    Article  Google Scholar 

  18. De Figueiredo, D.G., Gossez, J.P., Ubilla, P.: Local superlinearity and sublinearity for indefinite semilinear elliptic problems. J. Funct. Anal. 199, 452–467 (2003)

    Article  MathSciNet  Google Scholar 

  19. De Figueiredo, D.G., Gossez, J.P., Ubilla, P.: Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity. J. Eur. Math. Soc. 8, 269–286 (2006)

    Article  MathSciNet  Google Scholar 

  20. Drábek, P., Pohozaev, S.I.: Positive solutions for the p-Laplacian: application of the fibering method. Proc. R. Soc. Edinb. Sect. A 127, 703–726 (1997)

    Article  MathSciNet  Google Scholar 

  21. Ilyasov, Y., Silva, K.: On branches of positive solutions for p-Laplacian problems at the extreme value of the Nehari manifold method. Proc. Am. Math. Soc. 146, 2925–2935 (2018)

    Article  MathSciNet  Google Scholar 

  22. Ladyzenskaya, O., Uralt’seva, N.: Linear and Quasilinear Elliptic Equations. Translated by Scripta Technica. Academic Press, New York (1968)

  23. Landesman, E.M., Lazer, A.C.: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19, 609–623 (1969/1970)

  24. Landesman, E.M., Lazer, A.C., Meyers, David R.: On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence. J. Math. Anal. Appl. 52, 594–614 (1975)

    Article  MathSciNet  Google Scholar 

  25. Medeiros, E.S., Severo, U.B., Silva, E.A.B.: On a class of elliptic problems with indefinite nonlinearities. Calc. Var. Partial Differ. Equ. 50, 751–777 (2014)

    Article  MathSciNet  Google Scholar 

  26. Ouyang, T.: On the positive solutions of semilinear equations \(\Delta u+\lambda u+hu^p=0\) on compact manifolds II. Indiana Univ. Math. J. 40, 1083–1141 (1991)

    Article  MathSciNet  Google Scholar 

  27. Peral, I.: Multiplicity of Solutions for the p-Laplacian. Second School on Nonlinear Functional Analysis and Applications to Differential Equations (1997)

  28. Rabinowitz, P.H.: Some Minimax Theorems and Applications to Nonlinear Partial Differential Equations. Nonlinear Analysis (a Collection of Papers in Honor of Erich Röthe), pp. 161–177. Academic Press, New York (1978)

    Google Scholar 

  29. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics, 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1986)

  30. Rezende, M.C.M., Sánchez-Aguilar, P.M., Silva, E.A.B.: A Landesman–Lazer local condition for semilinear elliptic problems. Bull. Braz. Math. Soc. https://doi.org/10.1007/s00574-019-00132-5

    Article  MathSciNet  Google Scholar 

  31. Silva, E.A.B.: Linking theorems and applications to semilinear elliptic problems at resonance. Nonlinear Anal. 16, 455–477 (1991)

    Article  MathSciNet  Google Scholar 

  32. Silva, K., Macedo, A.: Local minimizers over the Nehari manifold for a class of concave–convex problems with sign changing nonlinearity. J. Differ. Equ. 265, 1894–1921 (2018)

    Article  MathSciNet  Google Scholar 

  33. Stampacchia, G.Le: problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–258 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was done while the second and third authors were visiting the Departamento de Análisis Matemático, Universidad de Granada. They would like to present their gratitude for the warm hospitaltiy of the whole members of that department.

First author is supported by FEDER-MEC (Spain) PGC2018-096422-B-I00 and Junta de Andalucía FQM-116. Third author is supported by CNPq (Brazil) 311808/2014-0 and 312060/2018-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. B. Silva.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 2.6:

By Stampacchia method [33], there is \(M=M(\Vert g\Vert _\sigma )\) such that

$$\begin{aligned} \Vert u\Vert _\infty \le M. \end{aligned}$$
(6.1)

Next, given \(k \ge 0\) and a ball \(B_\rho \) of \(\mathbb {R}^N\), \(\rho >0\), we consider \(\eta (x)=\xi ^p|u-k|^+\), where \(\xi :B_\rho \rightarrow [0,1]\) is a smooth function of compact support on \(B_\rho \). Setting \(A_{k, \rho }=\{x \in B_\rho \cap \Omega ; u(x)>k\}\) and considering that \(\eta \in W_0^{1,p}(\Omega )\), from (2.23), we get

$$\begin{aligned} \int _{A_{k, \rho }} \xi ^p |\nabla u|^p dx+p\int _{A_{k, \rho }} |u-k| \xi ^{p-1} |\nabla u|^{p-2} \nabla u \cdot \nabla \xi dx=\int _{A_{k, \rho }} g(x)\xi ^p (u-k) dx. \end{aligned}$$

Consequently, by Hölder inequality,

$$\begin{aligned} \int _{A_{k, \rho }} \xi ^p |\nabla u|^p dx \le p\int _{A_{k, \rho }} \xi ^{p-1} |\nabla u|^{p-1} |u-k| |\nabla \xi | dx+\Vert u\Vert _\infty \Vert g\Vert _\sigma |A_{k, \rho }|^{1-\frac{1}{\sigma }}. \end{aligned}$$

Next, using the Young inequality, we get

$$\begin{aligned} p\xi ^{p-1}|\nabla u|^{p-1} |u-k||\nabla \xi | \le \frac{1}{2}|u-k|^p|\nabla \xi |^p+2^{p-1}(p-1)^{p-1}|u-k|^p|\nabla \xi |^p. \end{aligned}$$

Combining the above inequalities, we obtain

$$\begin{aligned} \int _{A_{k, \rho }} \xi ^p |\nabla u|^p dx \le 2^p (p-1)^{p-1}\int _{A_{k, \rho }}|u-k|^p|\nabla \xi |^p dx + 2\Vert u\Vert _\infty \Vert g\Vert _\sigma |A_{k, \rho }|^{1-\frac{1}{\sigma }}.\nonumber \\ \end{aligned}$$
(6.2)

Now, given \(\delta >0\), we let \(k \ge 0\) be such that \(\sup _{B_\rho \cap \Omega } [u(x)-\delta ] \le k\). From these values of k, we take \(\xi \) such that \(\xi (x)=1\) for every \(x \in B_{\rho -\mu \rho }\), for \(0<\mu <1\), in such a way that \(|\nabla \xi |<\frac{c}{\mu \rho }\). Then, from (6.2) we may write

$$\begin{aligned} \int _{A_{k, (1-\mu )\rho }} |\nabla u|^p dx\le & {} \frac{2^p(p-1)^p c^p}{(\mu \rho )^p} \sup _{A_{k, \rho }}|u-k|^p |A_{k, \rho }| +2\Vert u\Vert _\infty \Vert g\Vert _\sigma |A_{k, \rho }|^{1-\frac{1}{\sigma }}\\= & {} \Big [\frac{2^p (p-1)^{p-1} c^p}{\mu ^p\rho ^p}|A_{k, \rho }|^{\frac{1}{\sigma }}\sup _{A_{k, \rho }}|u-k|^p+2\Vert u\Vert _\infty \Vert g\Vert _\sigma \Big ] |A_{k, \rho }|^{1-\frac{1}{\sigma }}\\\le & {} \Big [\frac{2^p (p-1)^{p-1} c}{\mu ^p\rho ^p}|c_N|^{\frac{1}{\sigma }} \rho ^{\frac{N}{\sigma }}\sup _{A_{k, \rho }}|u-k|^p+2\Vert u\Vert _\infty \Vert g\Vert _\sigma \Big ] |A_{k, \rho }|^{1-\frac{1}{\sigma }} \end{aligned}$$

or, equivalently,

$$\begin{aligned} \int _{A_{k, (1-\mu )\rho }} |\nabla u|^p dx \le \gamma \Big [\frac{\max |u-k|^p}{\mu ^p\rho ^{p(1-\frac{N}{p\sigma })}}+1\Big ]|A_{k, \rho }|^{1-\frac{p}{\sigma p}}, \end{aligned}$$

where \(\gamma =\max \{2\Vert u\Vert _\infty \Vert g\Vert _\sigma , {c_N}^{\frac{1}{\sigma }} 2^p(p-1)^{p-1}\}\).

Observing that we obtain the same estimate for the function \(-u(x)\) for every \(k>\sup _{B_\rho \cap \Omega }[-u(x)-\delta ]\), by taking \(\eta (x)=\xi ^p(-u-k)^+\), we may assert that \(u \in \mathcal {B}_p(\overline{\Omega }, M, \gamma , \delta , \frac{1}{\sigma p})\), where \(\mathcal {B}_p\) is as defined in [22, p. 90].

Since \(\sigma p>N\), we may invoke Theorem 7.1 in [22] to find that there is \(c>0\) and \(\alpha \in (0, 1)\) such that \(\Vert u\Vert _{C^{0, \alpha }(\overline{\Omega })} \le c\) with the constants c and \(\alpha \) depending on \(p, M, \gamma ,\delta , \sigma \) and \(\Omega \). In view of (6.1), this concludes the proof of Theorem 2.6. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcoya, D., Rezende, M.C.M. & Silva, E.A.B. Quasilinear problems under local Landesman–Lazer condition. Calc. Var. 58, 210 (2019). https://doi.org/10.1007/s00526-019-1650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1650-9

Mathematics Subject Classification

Navigation