Skip to main content
Log in

Regularity theory for type I Ricci flows

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider Type I Ricci flows and obtain integral estimates for the curvature tensor valid up to, and including, the singular time. Our estimates partially extend to higher dimensions a curvature estimate recently shown to hold in dimension three by Kleiner and Lott (Acta Math 219(1):65–134, 2017). To do this we adapt the technique of quantitative stratification, introduced by Cheeger–Naber (Invent Math 191(2):321–339, 2013), to this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren Jr., F.J.: \(Q\) valued functions minimizing Dirichlet’s integral and the regularity of area minimizing rectifiable currents up to codimension two. Bull. Am. Math. Soc. (N.S.) 8(2), 327–328 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sigurd, B.: Angenent, James Isenberg, and Dan Knopf, Degenerate neckpinches in Ricci flow. J. Reine Angew. Math. 709, 81–117 (2015)

    MathSciNet  Google Scholar 

  3. Breiner, C., Lamm, T.: Quantitative stratification and higher regularity for biharmonic maps. Manuscripta Math. 148(3–4), 379–398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, H.-D., Hamilton, R. S., Ilmanen, T.: Gaussian densities and stability for some Ricci solitons, ArXiv Mathematics e-prints (2004)

  5. Cheeger, J., Haslhofer, R., Naber, A.: Quantitative stratification and the regularity of mean curvature flow. Geom. Funct. Anal. 23(3), 828–847 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheeger, J., Haslhofer, R., Naber, A.: Quantitative stratification and the regularity of harmonic map flow. Calc. Var. Partial Differ. Equ. 53(1–2), 365–381 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheeger, J., Naber, A.: Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent. Math. 191(2), 321–339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheeger, J., Naber, A.: Quantitative stratification and the regularity of harmonic maps and minimal currents. Commun. Pure Appl. Math. 66(6), 965–990 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, B.-L., Zhu, X.-P.: Uniqueness of the Ricci flow on complete noncompact manifolds. J. Differ. Geom. 74(1), 119–154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Enders, J.: Generalizations of the reduced distance in the Ricci flow—Monotonicity and applications, ProQuest LLC, Ann Arbor, MI. Ph.D. thesis, Michigan State University (2008)

  11. Enders, J., Müller, R., Topping, P.M.: On type-I singularities in Ricci flow. Commun. Anal. Geom. 19(5), 905–922 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Federer, H.: The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension. Bull. Am. Math. Soc. 76, 767–771 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feldman, M., Ilmanen, T., Knopf, D.: Rotationally symmetric shrinking and expanding gradient kähler-ricci solitons. J. Differ. Geom. 65(2), 169–209 (2003)

    Article  MATH  Google Scholar 

  14. Gianniotis, P.: The size of the singular set of a type I Ricci flow. J. Geom. Anal. 27, 1–21 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haslhofer, R., Naber, A.: Characterizations of the Ricci flow. J. Eur. Math. Soc. (JEMS) 20(5), 1269–1302 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haslhofer, R., Müller, R.: A compactness theorem for complete Ricci shrinkers. Geom. Funct. Anal. 21(5), 1091–1116 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Isenberg, J., Knopf, D., Sesum, N.: Non-Kahler Ricci flow singularities that converge to Kahler-Ricci solitons (2017). arXiv:1703.02918

  18. Kleiner, B., Lott, J.: Singular Ricci flows I. Acta Math. 219(1), 65–134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12(5), 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kopfer, E., Sturm, K.-T.: Heat flows on time-dependent metric measure spaces and super-Ricci flows. Commun. Pure Appl. Math. 71(12), 2500–2608 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kotschwar, B.L.: Backwards uniqueness for the Ricci flow. Int. Math. Res. Not. 2010(21), 4064–4097 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Li, X., Ni, L., Wang, K.: Four-dimentional Gradient Shrinking Solitons with Positive Isotropic Curvature (2016). arXiv:1603.05264

  23. Mantegazza, C., Müller, R.: Perelman’s entropy functional at Type I singularities of the Ricci flow. J. Reine Angew. Math. 703, 173–199 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Naber, A.: Noncompact shrinking four solitons with nonnegative curvature. J. Reine Angew. Math. 645, 125–153 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002). arXiv:math/0211159

  26. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sesum, N.: Convergence of the Ricci flow toward a soliton. Commun. Anal. Geom. 14(2), 283–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Simon, L.: Theorems on the regularity and singularity of minimal surfaces and harmonic maps. Geom. Global Anal. Tohoku Univ. Sendai 12, 111–145 (1993)

    MathSciNet  MATH  Google Scholar 

  29. Sturm, K.-T.: Super-Ricci flows for metric measure spaces. I. J. Funct. Anal. 275(12), 3504–3569 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Topping, P.: Diameter control under Ricci flow. Commun. Anal. Geom. 13(5), 1039–1055 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. White, B.: Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math. 488, 1–35 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Qi, S.: Zhang, Bounds on volume growth of geodesic balls under Ricci flow. Math. Res. Lett. 19(1), 245–253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Qi, S.: Zhang, on the question of diameter bounds in Ricci flow. Illinois J. Math. 58(1), 113–123 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, Z.-H.: Gradient shrinking solitons with vanishing Weyl tensor. Pac. J. Math. 242(1), 189–200 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge support from the Fields Institute during the completion of this work, and thank University of Waterloo and Spiro Karigiannis for their hospitality. Moreover, the author is grateful to Robert Haslhofer for his interest in this work and for many discussions on an earlier draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Gianniotis.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gianniotis, P. Regularity theory for type I Ricci flows. Calc. Var. 58, 200 (2019). https://doi.org/10.1007/s00526-019-1644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1644-7

Mathematics Subject Classification

Navigation