Skip to main content

Advertisement

Log in

A quantitative Weinstock inequality for convex sets

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of a quantitative Weinstock inequality in higher dimension for the first non trivial Steklov eigenvalue of the Laplace operator for convex sets. The key role is played by a quantitative isoperimetric inequality which involves the boundary momentum, the volume and the perimeter of a convex open set of \({\mathbb {R}}^n\), \(n \ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  2. Bandle, C.: Isoperimetric Inequalities and Applications. Pitman, Boston (1980)

    MATH  Google Scholar 

  3. Betta, M.F., Brock, F., Mercaldo, A., Posteraro, M.R.: A weighted isoperimetric inequality and applications to symmetrization. J. Inequal. Appl. 3, 215–240 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Brasco, L., De Philippis, G., Ruffini, B.: Spectral optimization for the Stekloff–Laplacian: the stability issue. J. Funct. Anal. 262, 4675–4710 (2012)

    Article  MathSciNet  Google Scholar 

  5. Brasco, L., De Philippis, G.: Spectral inequalities in quantitative form. In: Henrot, A. (ed.) Shape optimization and spectral theory, pp. 201–281. De Gruyter Open, Warsaw, Poland (2017)

    MATH  Google Scholar 

  6. Brock, F.: An isoperimetric inequality for eigenvalues of the Stekloff problem. ZAMM Z Angew. Math. Mech. 81(1), 69–71 (2001)

    Article  MathSciNet  Google Scholar 

  7. Bucur, D., Ferone, V., Nitsch, C., Trombetti, C.: Weinstock inequality in higher dimensions. arXiv:1710.04587v2

  8. Esposito, L., Fusco, N., Trombetti, C.: A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4, 619–651 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press Inc., Boca Raton (1992)

    MATH  Google Scholar 

  10. Fuglede, B.: Stability in the isoperimetric problem for convex or nearly spherical domains in \(\mathbb{R}^n\). Trans. Am. Math. Soc. 314, 619–638 (1989)

    MATH  Google Scholar 

  11. Fusco, N.: The quantitative isoperimetric inequality and related topics. Bull. Math. Sci. 5, 517–607 (2015)

    Article  MathSciNet  Google Scholar 

  12. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhauser Verlag, Basel (2006)

    Book  Google Scholar 

  13. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  14. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  15. Weinstock, R.: Inequalities for a Classical Eigenvalue Problem. Department of Mathematics, Stanford Univeristy, Technical Report 37 (1954)

  16. Weinstock, R.: Inequalities for a classical eigenvalue problem. J. Ration. Mech. Anal. 3, 745–753 (1954)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nunzia Gavitone.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavitone, N., La Manna, D.A., Paoli, G. et al. A quantitative Weinstock inequality for convex sets. Calc. Var. 59, 2 (2020). https://doi.org/10.1007/s00526-019-1642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1642-9

Mathematics Subject Classification

Navigation