Skip to main content
Log in

General least gradient problems with obstacle

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study existence, structure, uniqueness and regularity of solutions of the obstacle problem

$$\begin{aligned} \inf _{u\in BV_f(\Omega )}\int _{\Omega }\phi (x,Du), \end{aligned}$$

where \(BV_f(\Omega )=\{u\in BV({\mathbb {R}}^n): u\ge \psi \text { in }\Omega \text { and } u|_{\partial \Omega }=f|_{\partial \Omega }\}\), \(f \in W^{1,1}_0({\mathbb {R}}^n)\), \(\psi \) is the obstacle, and \(\phi (x,\xi )\) is a convex, continuous and homogeneous function of degree one with respect to the \(\xi \) variable. We show that every minimizer of this problem is also a minimizer of the least gradient problem

$$\begin{aligned} \inf _{u\in {\mathcal {A}}_f(\Omega )}\int _{{\mathbb {R}}^n}\phi (x,Du), \end{aligned}$$

where \({\mathcal {A}}_f(\Omega )=\{u\in BV(\Omega ): u\ge \psi , \text { and } u=f \text { in }\Omega ^c\}\). Moreover, there exists a vector field T with \(\nabla \cdot T \le 0\) in \(\Omega \) which determines the structure of all minimizers of these two problems, and T is divergence free on \(\{x\in \Omega : u(x)>\psi (x)\}\) for any minimizer u. We also present uniqueness and regularity results that are based on maximum principles for minimal surfaces. Since minimizers of the least gradient problems with obstacle do not hit small enough obstacles, the results presented in this paper extend several results in the literature about least gradient problems without obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G.: A Lusin type theorem for gradients. J. Funct. Anal. 100(1), 110–118 (1991)

    Article  MathSciNet  Google Scholar 

  2. Amar, M., Bellettini, G.: A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. Henri Poincare Anal. Non Lineaire 11, 91–133 (1994)

    Article  MathSciNet  Google Scholar 

  3. Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. (4) 135(1), 293–318 (1983)

    Article  MathSciNet  Google Scholar 

  4. Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math. 7, 243–268 (1969)

    Article  MathSciNet  Google Scholar 

  5. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. North-Holland-Elsevier, Amsterdam (1976)

    MATH  Google Scholar 

  6. Górny, W.: Planar least gradient problem: existence, regularity and anisotropic case. Calc. Var. Partial Differ. Equ. 57(4), 27 (2018). Art. 98

    Article  MathSciNet  Google Scholar 

  7. Jerrard, R.L., Moradifam, A., Nachman, A.I.: Existence and uniqueness of minimizers of general least gradient problems. J. Reine Angew. Math. 734, 71–97 (2018)

    Article  MathSciNet  Google Scholar 

  8. Juutinen, P.: p-Harmonic approximation of functions of least gradient. Indiana Univ. Math. J. 54, 1015–1029 (2005)

    Article  MathSciNet  Google Scholar 

  9. Kohn, R., Strang, G.: The Constrained Least Gradient Problem. Nonclassical Continuum Mechanics, (Durham, 1986). London Mathematical Society Lecture Note Series, vol. 122, pp. 226–243. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  10. Mazón, J.M., Rossi, J.D., Segura de León, S.: Functions of least gradient and 1-harmonic functions. Indiana Univ. Math. J. 63(4), 1067–1084 (2014)

    Article  MathSciNet  Google Scholar 

  11. Miranda, M.: Comportamento delle successioni convergenti di frontiere minimali. Rend. Sem. Mat. Univ. Padova 38, 238–257 (1967)

    MathSciNet  MATH  Google Scholar 

  12. Moradifam, A.: Existence and structure of minimizers of least gradient problems. Indiana Univ. Math. J. 67(3), 1025–1037 (2018)

    Article  MathSciNet  Google Scholar 

  13. Moradifam, A.: Least gradient problems with Neumann boundary condition. J. Differ. Equ. 263(11), 7900–7918 (2017)

    Article  MathSciNet  Google Scholar 

  14. Moradifam, A., Nachman, A., Tamasan, A.: Conductivity imaging from one interior measurement in the presence of perfectly conducting and insulating inclusions. SIAM J. Math. Anal. 44, 3969–3990 (2012)

    Article  MathSciNet  Google Scholar 

  15. Moradifam, A., Nachman, A., Timonov, A.: A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data. Inverse Probl. 28, 084003 (2012). (23pp)

    Article  MathSciNet  Google Scholar 

  16. Nachman, A., Tamasan, A., Timonov, A.: Conductivity imaging with a single measurement of boundary and interior data. Inverse Probl. 23, 2551–2563 (2007)

    Article  MathSciNet  Google Scholar 

  17. Nachman, A., Tamasan, A., Timonov, A.: Recovering the conductivity from a single measurement of interior data. Inverse Probl. 25, 035014 (2009). (16pp)

    Article  MathSciNet  Google Scholar 

  18. Nachman, A., Tamasan, A., Timonov, A.: Reconstruction of planar conductivities in subdomains from incomplete data. SIAM J. Appl. Math. 70(8), 3342–3362 (2010)

    Article  MathSciNet  Google Scholar 

  19. Schoen, R., Simon Jr., L., Almgren, F.J.: Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. Acta Math. 139(3–4), 217–265 (1977)

    Article  MathSciNet  Google Scholar 

  20. Simon, L.: A strict maximum principle for area minimizing hypersurfaces. J. Differ. Geom. 26(2), 327–335 (1987)

    Article  MathSciNet  Google Scholar 

  21. Sternberg, P., Williams, G., Ziemer, W.P.: Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430, 35–60 (1992)

    MathSciNet  MATH  Google Scholar 

  22. Sternberg, P., Williams, G., Ziemer, W.P.: The constrained least gradient problem in \(R^n\). Trans. Am. Math. Soc. 339(1), 403–432 (1993)

    MATH  Google Scholar 

  23. Ziemer, W.P., Zumbrun, K.: The obstacle problem for functions of least gradient. Math. Bohem. 124(2–3), 193–219 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Zuniga, A.: Continuity of minimizers to weighted least gradient problems. Nonlinear Anal. 178, 86–109 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Moradifam.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Amir Moradifam is supported by NSF Grant DMS-1715850.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotouhi, M., Moradifam, A. General least gradient problems with obstacle. Calc. Var. 58, 182 (2019). https://doi.org/10.1007/s00526-019-1635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1635-8

Mathematics Subject Classification

Navigation