Skip to main content
Log in

Gradient Continuity for Nonlinear Obstacle Problems

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that the gradients of solutions to obstacle problems are continuous if the gradients of obstacles satisfy a Dini type continuity assumption. We also consider coefficients and nonhomogeneous data and investigate their regularity conditions to obtain gradient continuity, extending to the constrained case results starting with those presented by Mingione (J Eur Math Soc 13:459–486, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bildhauer, M., Fuchs, M., Mingione, G.: A priori gradient bounds and local \(C^{1,\alpha }\) -estimates for (double) obstacle problems under non-standard growth conditions. Z. Anal. Anwendungen 20(4), 959–985 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baroni, P.: Lorentz estimates for obstacle parabolic problems. Nonlinear Anal. 96, 167–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baroni, P., Kuusi, T., Mingione, G.: Borderline gradient continuity of minima. J. Fixed Point Theory Appl. 15(2), 537–575 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bögelein, V., Duzaar, F., Mingione G.: Degenerate problems with irregular obstacles. J. Reine Angew. Math. 650, 107–160 (2011)

  5. Brézis, H., Kinderlehrer, D.: The smoothness of solutions to nonlinear variational inequalities. Indiana Univ. Math. J. 23, 831–844 (1973/1974)

  6. Byun, S., Cho, Y., Ok, J.: Global gradient estimates for nonlinear obstacle problems with nonstandard growth. Forum Math. 28(4), 729–747 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Byun, S., Cho, Y., Wang, L.: Calderón–Zygmund theory for nonlinear elliptic problems with irregular obstacles. J. Funct. Anal. 263(10), 3117–3143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L.A., Kinderlehrer, D.: Potential methods in variational inequalities. J. Anal. Math. 37, 285–295 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Choe, H.: A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Rational Mech. Anal. 114(4), 383–394 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Choe, H., Lewis, J.L.: On the obstacle problem for quasilinear elliptic equations of \(p\) Laplacian type. SIAM J. Math. Anal. 22(3), 623–638 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fuchs, M.: Hölder continuity of the gradient for degenerate variational inequalities. Nonlinear Anal. 15(1), 85–100 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, River Edge (2003)

    Book  MATH  Google Scholar 

  14. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, Pure Appl. Math., vol. 88. Academic Press (Harcourt Brace Jovanovich), New York (1980)

  15. Kuusi, T., Mingione, G.: New perturbation methods for nonlinear parabolic problems. J. Math. Pures Appl. (9) 98(4), 390–427 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuusi, T., Mingione, G.: Linear potentials in nonlinear potential theory. Arch. Ration. Mech. Anal. 207(1), 215–246 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuusi, T., Mingione, G.: Universal potential estimates. J. Funct. Anal. 262, 4205–4269 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuusi, T., Mingione, G.: A nonlinear Stein theorem. Calc. Var. Partial Differ. Equ. 51(1–2), 45–86 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuusi, T., Mingione, G.: The Wolff gradient bound for degenerate parabolic equations. J. Eur. Math. Soc. (JEMS) 16(4), 835–892 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuusi, T., Mingione, G.: Riesz potentials and nonlinear parabolic equations. Arch. Ration. Mech. Anal. 212(3), 727–780 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lindqvist, P.: Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity. Nonlinear Anal. 12(11), 1245–1255 (1988)

    Article  MathSciNet  Google Scholar 

  22. Manfredi, J.: Regularity for minima of functionals with \(p\)-growth. J. Differ. Equ. 76(2), 203–212 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Michael, J.H., Ziemer, W.P.: Interior regularity for solutions to obstacle problems. Nonlinear Anal. 10(12), 1427–1448 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mingione, G.: Gradient potential estimates. J. Eur. Math. Soc. 13, 459–486 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Mu, J., Jun, Ziemer, W.P.: Smooth regularity of solutions of double obstacle problems involving degenerate elliptic equations. Commun. Partial Differ. Equ. 16(4–5), 821–843 (1991)

  26. Ok, J.: Gradient continuity for \(p(\cdot )\) -Laplace systems. Nonlinear Anal. 141, 139–166 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ok, J.: \(C^1\)-regularity for minimizers to functionals with \(p(x)\)-growth(preprint)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihoon Ok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ok, J. Gradient Continuity for Nonlinear Obstacle Problems. Mediterr. J. Math. 14, 16 (2017). https://doi.org/10.1007/s00009-016-0838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-016-0838-x

Keywords

Mathematics Subject Classification

Navigation