Skip to main content
Log in

Instantaneously complete Chern–Ricci flow and Kähler–Einstein metrics

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this work, we obtain some existence results of Chern–Ricci Flows and the corresponding Potential Flows on complex manifolds with possibly incomplete initial data. We discuss the behaviour of the solution as \(t\rightarrow 0\). These results can be viewed as a generalization of an existence result of Ricci flow by Giesen and Topping for surfaces of hyperbolic type to higher dimensions in certain sense. On the other hand, we also discuss the long time behaviour of the solution and obtain some sufficient conditions for the existence of Kähler-Einstein metric on complete non-compact Hermitian manifolds, which generalizes the work of Lott–Zhang and Tosatti–Weinkove to complete non-compact Hermitian manifolds with possibly unbounded curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aubin, T.: Équations du type Monge-Ampère sur les variétés kähleriennes compactes. C. R. Acad. Sci. Paris Sér. A-B, 283(3), A119–A121 (1976)

  2. Boucksom, S., Guedj, V.: Regularizing properties of the Kähler–Ricci flow. In: An Introduction to the Kähler-Ricci Flow. Lecture Notes in Mathematics, vol. 2086, pp. 189–237. Springer, Cham (2013)

  3. Cao, H.-D.: Deforming of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MathSciNet  Google Scholar 

  4. Chau, A.: Convergence of the Kähler–Ricci flow on noncompact Kähler manifolds. J. Differ. Geom. 66(1), 211–232 (2004)

    Article  Google Scholar 

  5. Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82(2), 363–382 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cheng, S.-Y., Yau, S.-T.: On the existence of a complete Kähler Metric on noncompact complex manifolds and the regularity of Fefferman’s equation. Commun. Pure Appl. Math. 33(4), 507–544 (1980)

    Article  Google Scholar 

  7. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications: Part II: Analytic Aspects, Mathematical Surveys and Monographs, 144. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  8. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications, Part III. Geometric-Analytic Aspects. Mathematical Surveys and Monographs, vol. 163. American Mathematical Society, Providence (2010)

  9. Ge, H., Lin, A., Shen, L.-M.: The Kähler–Ricci flow on pseudoconvex domain. arXiv:1803.07761

  10. Giesen, G., Topping, P.-M.: Ricci flow of negatively curved incomplete surfaces. Calc. Var. PDE 38, 357–367 (2010)

    Article  MathSciNet  Google Scholar 

  11. Giesen, G., Topping, P.-M.: Existence of Ricci flows of incomplete surfaces. Commun. Partial Differ. Equ. 36, 1860–1880 (2011)

    Article  MathSciNet  Google Scholar 

  12. Giesen, G., Topping, P.-M.: Ricci flows with unbounded curvature. Math. Zeit. 273, 449–460 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gill, M.: Convergence of the parabolic complex Monge–Ampère equation on compact Hermitian manifolds. Commun. Anal. Geom. 19(2), 277–303 (2011)

    Article  Google Scholar 

  14. He, F., Lee, M.-C.: Weakly PIC1 manifolds with maximal volume growth. arXiv:1811.03318

  15. Huang, S.-C.: A note on existence of exhaustion functions and its applications. J. Geom. Anal. 29(2), 1649–1659 (2019)

    Article  MathSciNet  Google Scholar 

  16. Huang, S.-C., Lee, M.-C., Tam L.-F., Tong, F.: Longtime existence of Kähler–Ricci flow and holomorphic sectional curvature. arXiv:1805.12328

  17. Lee, M.-C.; Tam, L.-F.: Chern-Ricci flows on noncompact manifolds. To appear in J. Differ. Geom. arXiv:1708.00141

  18. Lott, J., Zhang, Z.: Ricci flow on quasi-projective manifolds. Duke Math. J. 156(1), 87–123 (2011)

    Article  MathSciNet  Google Scholar 

  19. Ni, L., Tam, L.-F.: Poincarè–Lelong equation via the Hodge-Laplace heat equation. Compos. Math. 149(11), 1856–1870 (2013)

    Article  MathSciNet  Google Scholar 

  20. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159

  21. Sherman, M., Weinkove, B.: Interior derivative estimates for the Kähler–Ricci flow. Pac. J. Math. 257(2), 491–501 (2012)

    Article  Google Scholar 

  22. Sherman, M., Weinkove, B.: Local Calabi and curvature estimates for the Chern–Ricci flow. N. Y. J. Math. 19, 565–582 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Shi, W.-X.: Ricci deformation of the metric on complete Riemannian manifolds. J. Differ. Geom. 30, 303–394 (1989)

    Article  MathSciNet  Google Scholar 

  24. Shi, W.-X.: Ricci flow and the uniformization on complete noncompact Kähler manifolds. J. Differ. Geom. 45, 94–220 (1997)

    Article  Google Scholar 

  25. Song, J., Tian, G.: The Kähler–Ricci flow through singularities. Invent. Math. 207(2), 519–595 (2017)

    Article  MathSciNet  Google Scholar 

  26. Tam, L.-F.: Exhaustion functions on complete manifolds, recent advances in geometric analysis. Adv. Lect. Math. (ALM) 11, 211–215 (2010)

    MATH  Google Scholar 

  27. Tian, G., Zhang, Z.: On the Kähler–Ricci flow on projective manifolds of general type. Chin. Ann. Math. Ser. B 27(2), 179192 (2006)

    Google Scholar 

  28. Tô, T.-D.: Regularizing properties of complex Monge–Ampère flows II: Hermitian manifolds. Math. Ann. 372(1–2), 699–741 (2018)

    Article  MathSciNet  Google Scholar 

  29. Topping, P.-M.: Ricci flow compactness via pseudolocality, and flows with incomplete initial metrics. J. Eur. Math. Soc. (JEMS) 12, 1429–1451 (2010)

    Article  MathSciNet  Google Scholar 

  30. Tosatti, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern–Ricci form. J. Differ. Geom. 99(1), 125–163 (2015)

    Article  MathSciNet  Google Scholar 

  31. Yau, S.-T.: A general Schwarz lemma for Kähler manifolds. Am. J. Math. 100(1), 197–203 (1978)

    Article  Google Scholar 

  32. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-Chun Lee.

Additional information

Communicated by P. Topping.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Huang: Research partially supported by China Postdoctoral Science Foundation #2017T100059. L.-F. Tam: Research partially supported by Hong Kong RGC General Research Fund #CUHK 14301517.

Appendices

Appendix A: Some basic relations

Let g(t) be a solution to the Chern–Ricci flow,

$$\begin{aligned} \partial _tg=-\text {Ric}(g) \end{aligned}$$

and h is another Hermitian metric. Let \(\omega (t)\) be the Kähler form of g(t), \(\theta _0\) be the Kähler form of h. Let

$$\begin{aligned} \phi (t)=\int _0^t\log \frac{\omega ^n(s)}{\theta _0^n}ds. \nonumber \\ \omega (t)=\omega (0)-t\text {Ric}(\theta _0)+\sqrt{-1}\partial \bar{\partial }\phi . \end{aligned}$$
(A.1)

Let \({\dot{\phi }}=\frac{\partial }{\partial t}\phi \). Then

$$\begin{aligned} \left( \frac{\partial }{\partial t}-\Delta \right) {\dot{\phi }}=-{\text {tr}}_g(\text {Ric}(\theta _0)), \end{aligned}$$
(A.2)

where \( \Delta \) is the Chern Laplacian with respect to g.

On the other hand, if g is as above, the solution \(\widetilde{g}\) of the corresponding normalized Chern–Ricci flow with the same initial data

$$\begin{aligned} \partial _t\widetilde{g}=-\text {Ric}(\widetilde{g})-\widetilde{g} \end{aligned}$$

is given by

$$\begin{aligned} \widetilde{g}(x,t)=e^{-t}g(x,e^{t}-1). \end{aligned}$$

The corresponding potential u is given by

$$\begin{aligned} u(t)=e^{-t}\int _0^te^s\log \frac{\widetilde{\omega }^n(s)}{\theta _0^n}ds \end{aligned}$$

where \(\widetilde{\omega }(s)\) is the Kähler form of \(\widetilde{g}(s)\). Also,

$$\begin{aligned} \widetilde{\omega }(t)= & {} -\text {Ric}(\theta _0)+e^{-t}(\text {Ric}(\theta _0)+\omega (0))+\sqrt{-1}\partial \bar{\partial }u. \end{aligned}$$
(A.3)
$$\begin{aligned} \left( \frac{\partial }{\partial t}-\widetilde{\Delta }\right) (\dot{u}+u)= & {} -{\text {tr}}_{\widetilde{g}}\text {Ric}(\theta _0)-n, \end{aligned}$$
(A.4)

where \(\widetilde{\Delta }\) is the Chern Laplacian with respect to \(\widetilde{g}\).

Lemma A.1

(See [17, 30]) Let g(t) be a solution to the Chern–Ricci flow and let \(\Upsilon ={\text {tr}}_{ h}g\), and \(\Theta ={\text {tr}}_g h\).

$$\begin{aligned} \left( \frac{\partial }{\partial t}-\Delta \right) \log \Upsilon =\mathrm {I+II+III} \end{aligned}$$

where

$$\begin{aligned} \mathrm {I}\le & {} 2\Upsilon ^{-2}\mathbf{Re }\left( h^{i{{\bar{l}}}} g^{k\bar{q}}( T_0)_{ki{{\bar{l}}}} {\hat{\nabla }}_{{{\bar{q}}}}\Upsilon \right) . \\ \mathrm {II}= & {} \Upsilon ^{-1} g^{i\bar{j}}{{\hat{h}}}^{k{{\bar{l}}}}g_{k{{\bar{q}}}} \left( {\hat{\nabla }}_i \overline{({{\hat{T}}})_{jl}^q}- {{\hat{h}}}^{p{{\bar{q}}}}{{\hat{R}}}_{i{{\bar{l}}}p{{\bar{j}}}}\right) \\ \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \mathrm {III}=&-\Upsilon ^{-1} g^{{i\bar{j}}} h^{k{{\bar{l}}}}\left( \hat{\nabla }_i\left( \overline{( T_0)_{jl{{\bar{k}}}}} \right) +{\hat{\nabla }}_{{{\bar{l}}}}\left( {( T_0)_{ik{{\bar{j}}}} }\right) -\overline{ ({{\hat{T}}})_{jl}^q}( T_0)_{ik{{\bar{q}}}}^p \right) . \end{aligned} \end{aligned}$$

where \(T_0\) is the torsion of \(g_0=g(0)\), \({{\hat{T}}}\) is the torsion of h and \({\hat{\nabla }}\) is the derivative with respect to the Chern connection of h.

Appendix B: A maximum principle

We have the following maximum principle, see [16] for example.

Lemma B.1

Let \((M^n,h)\) be a complete non-compact Hermitian manifold satisfying condition: There exists a smooth positive real exhaustion function \(\rho \) such that \(|\partial \rho |^2_h+|\sqrt{-1}\partial {\bar{\partial }} \rho |_h\le C_1\). Suppose g(t) is a solution to the Chern–Ricci flow on \(M\times [0,S)\). Assume for any \(0<S_1<S\), there is \(C_2>0\) such that

$$\begin{aligned} C_2^{-1}h\le g(t) \end{aligned}$$

for \(0\le t\le S_1\). Let f be a smooth function on \(M\times [0,S)\) which is bounded from above such that

$$\begin{aligned} \left( \frac{\partial }{\partial t}-\Delta \right) f\le 0 \end{aligned}$$

on \(\{f>0\}\) in the sense of barrier. Suppose \(f\le 0\) at \(t=0\), then \(f\le 0\) on \(M\times [0,S)\).

We say that

$$\begin{aligned} \left( \frac{\partial }{\partial t}-\Delta \right) f\le \phi \end{aligned}$$

in the sense of barrier means that for fixed \(t_1>0\) and \(x_1\), for any \(\epsilon >0\), there is a smooth function \(\sigma (x)\) near x such that \(\sigma (x_1)=f(x_1,t_1)\), \(\sigma (x)\le f(x,t_1)\) near \(x_1\), such that \(\sigma \) is \(C^2\) and at \((x_1,t_1)\)

$$\begin{aligned} \frac{\partial _-}{\partial t}f(x,t)-\Delta \sigma (x)\le \phi (x)+\epsilon . \end{aligned}$$

Here

$$\begin{aligned} \frac{\partial _-}{\partial t}f(x,t)=\liminf _{h\rightarrow 0^+}\frac{f(x,t)-f(x,t-h)}{h}. \end{aligned}$$

for a function f(xt).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Lee, MC. & Tam, LF. Instantaneously complete Chern–Ricci flow and Kähler–Einstein metrics. Calc. Var. 58, 161 (2019). https://doi.org/10.1007/s00526-019-1612-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1612-2

Mathematics Subject Classification

Navigation