Skip to main content
Log in

An extension operator on bounded domains and applications

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we study a sharp Hardy–Littlewood–Sobolev type inequality with Riesz potential on bounded smooth domains. We obtain the inequality for a general bounded domain \(\Omega \) and show that if the extension constant for \(\Omega \) is strictly larger than the extension constant for the unit ball \(B_1\) then extremal functions exist. Using suitable test functions we show that this criterion is satisfied by an annular domain whose hole is sufficiently small. The construction of the test functions is not based on any positive mass type theorems, neither on the nonflatness of the boundary. By using a similar choice of test functions with the Poisson-kernel-based extension operator we prove the existence of an abstract domain having zero scalar curvature and strictly larger isoperimetric constant than that of the Euclidean ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Equations différentielles nonlinéaires et Problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)

    Google Scholar 

  2. Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. 138, 213–242 (1993)

    Google Scholar 

  3. Dou, J., Zhu, M.: Sharp Hardy–Littlewood–Sobolev inequality on the upper half space. Int. Math. Res. Not. 3, 651687 (2015). https://doi.org/10.1093/imrn/rnt213

    Google Scholar 

  4. Dou, J., Zhu, M.: Reversed Hardy–Littewood–Sobolev inequality. arXiv:1309.1974v3. International Mathematics Research Notices 19, 96969726 (2015). https://doi.org/10.1093/imrn/rnu241

  5. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  6. Frank, R., Lieb, E.: Sharp constants in several inequalities on the Heisenberg group. Ann. Math. 176, 349381 (2012). https://doi.org/10.4007/annals.2012.176.1.6

    Google Scholar 

  7. Gross, L.: Logarighmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1976)

    Google Scholar 

  8. Hang, F., Wang, X., Yan, X.: Sharp integral inequalities for harmonic functions. Commun. Pure Appl. Math. 61(1), 54–95 (2008)

    Google Scholar 

  9. Hang, F., Wang, X., Yan, X.: An integral equation in conformal geometry. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 1–21 (2009)

    Google Scholar 

  10. Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals (1). Math. Zeitschr. 27, 565–606 (1928)

    Google Scholar 

  11. Hardy, G.H., Littlewood, J.E.: On certain inequalities connected with the calculus of variations. J. Lond. Math. Soc. 5, 34–39 (1930)

    Google Scholar 

  12. Jin, T., Xiong, J.: On the isoperimetric constant over scalar-flat conformal classes (preprint)

  13. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17(1), 37–91 (1987)

    Google Scholar 

  14. Lee, J.M., Parker, T.H.: the method of moving spheres. J. Eur. Math. Soc. 6, 153–180 (2004)

    Google Scholar 

  15. Lieb, E.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

    Google Scholar 

  16. Morgan, F., Johnson, D.L.: Some sharp isoperimetric theorems for Riemannian manifolds. Indiana Univ. Math. J. 49(3), 1017–1041 (2000). MR MR1803220 (2002e:53043)

    Google Scholar 

  17. Ngo, Q.A., Nguyen, V.H.: Sharp reversed Hardy–Littlewood–Sobolev inequality on \(\mathbb{R}^n\). Isr. J. Math. (2017). https://doi.org/10.1007/s11856-017-1515-x

    Google Scholar 

  18. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)

    Google Scholar 

  19. Sobolev, S.L.: On a theorem of functional analysis. Math. Sb. (N.S.) 4, 471–479 (1938). (A. M. S. transl. Ser. 2, 34 (1963), 39-68)

    Google Scholar 

  20. Trudinger, N.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22, 265–274 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meijun Zhu.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Regularity

Appendix: Regularity

In this section we collect some regularity results, the proofs of which follow from standard arguments.

Lemma 5.1

If \(u\in L^{2(n - 1)/(n - 2)}(\partial \Omega )\) and \(v\in L^{2^*}(\Omega )\) satisfy

$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle u(y) = \int _\Omega \frac{a(x)v(x)}{\left| x - y\right| ^{n - 2}}\; \mathrm{d}x &{} y\in \partial \Omega \\ \displaystyle v(x) = \int _{\partial \Omega }\frac{b(y)u(y)}{\left| x- y\right| ^{n - 2}}\; \mathrm{d}S_y &{} x\in \Omega \end{array}\right. } \end{aligned}$$
(5.1)

where \(a\in L^\sigma (\Omega )\) for some \(\sigma > \frac{n}{2}\) and \(b\in L^\tau (\partial \Omega )\) for some \(\tau > n -1\) then \(u\in L^\infty (\partial \Omega )\) and \(v\in L^\infty (\Omega )\).

Lemma 5.2

Let \(\Omega \subset \mathbb R^n\) be a smooth bounded domain. The restriction operator \(R_2\) given in (2.19) maps \(L^\infty (\Omega )\) into \(C^{0,1}(\partial \Omega )\) and there is a constant \(C = C(n, \Omega )>0\) such that for every \(g\in L^\infty (\Omega )\),

$$\begin{aligned} \left| R_2g(y) - R_2g(z)\right| \le C\left\| g\right\| _{L^\infty (\Omega )}\left| y - z\right| \end{aligned}$$

for all \(y, z\in \partial \Omega \).

Lemma 5.3

Let \(\Omega \subset \mathbb R^n\) be a smooth bounded domain. The restriction operator \(R_2\) given in (2.19) maps \(L^\infty (\Omega )\) into \(C^1(\partial \Omega )\).

Lemma 5.4

If \(f\in L^\infty (\partial \Omega )\) then for every \(0< \beta <1\), \(E_2 f\in C^{0, \beta }({{\overline{\Omega }}})\) and there is a constant \(C = C(n, \Omega , \beta )\) such that for all \(x, z\in {{\overline{\Omega }}}\)

$$\begin{aligned} \left| E_2 f(x) - E_2 f(z)\right| \le C\left\| f\right\| _{L^\infty (\partial \Omega )}\left| x-z\right| ^\beta . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gluck, M., Zhu, M. An extension operator on bounded domains and applications. Calc. Var. 58, 79 (2019). https://doi.org/10.1007/s00526-019-1513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1513-4

Mathematics Subject Classification

Navigation