Skip to main content
Log in

Expansion formula for complex Monge–Ampère equation along cone singularities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we prove the asymptotic expansion of the solutions to some singular complex Monge–Ampère equation which arise naturally in the study of the conical Kähler–Einstein metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brendle, S.: Ricci flat Kähler metrics with edge singularities. Int. Math. Res. Not. 24, 5727–5766 (2013)

    Google Scholar 

  2. Calamai, S., Zheng, K.: Geodesics in the space of Kähler cone metrics, I. Am. J. Math. 137(5), 1149–1208 (2015)

    Google Scholar 

  3. Donaldson, S.K.: Kähler metrics with cone singularities along a divisor. In: Essays in mathematics and its applications, pp. 49–79. Springer, Heidelberg (2012)

  4. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. In: Annals of Mathematics Studies, vol. 105, pp. 297–300. Princeton University Press, Princeton, NJ (1983)

  5. Jeffres, T., Mazzeo, R., Rubinstein, Y.A.: Kähler-Einstein metrics with edge singularities. Ann. Math. (2) 183(1), 95–176 (2016)

    Google Scholar 

  6. Jeffres, T.D.: Uniqueness of Kähler–Einstein cone metrics. Publ. Mat. 44(2), 437–448 (2000)

    Google Scholar 

  7. Keller, J., Zheng, K.: Construction of constant scalar curvature Kähler cone metrics. Proc. Lond. Math. Soc. 117(3), 527–573 (2018)

    Google Scholar 

  8. Li, L., Wang, J., Zheng, K.: Conic singularities metrics with prescribed scalar curvature: a priori estimates for normal crossing divisors (2018). arXiv:1805.04944

  9. Li, L., Zheng, K.: Uniqueness of constant scalar curvature Kähler metrics with cone singularities, I: Reductivity. Math. Ann. (2017). https://doi.org/10.1007/s00208-017-1626-z

    Google Scholar 

  10. Li, L., Zheng, K.: Generalized Matsushima’s theorem and Kähler–Einstein cone metrics. Calc. Var. Partial Differ. Eq. 57(2). Art. 31, 43 (2018)

  11. Mazzeo, R.: Kähler-Einstein metrics singular along a smooth divisor, Exp. No. VI, 10 (1999)

  12. Song, J., Wang, X.: The greatest Ricci lower bound, conical Einstein metrics and Chern number inequality. Geom. Topol. 20(1), 49–102 (2016)

    Google Scholar 

  13. Tian, G.: Kähler–Einstein metrics on algebraic manifolds. Transcendental methods in algebraic geometry (Cetraro, 1994), pp. 143– 185 (1996)

  14. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Google Scholar 

  15. Yin, H.: Analysis aspects of Ricci flow on conical surfaces (2016). arXiv preprint arXiv:1605.08836

  16. Zheng, K.: Geodesics in the space of Kähler cone metrics, II. Uniqueness of constant scalar curvature Kähler cone metrics (2017). arXiv:1709.09616

  17. Zheng, K.: Existence of constant scalar curvature Kähler cone metrics, properness and geodesic stability (2018). arXiv:1803.09506

Download references

Acknowledgements

The work of H. Yin is supported by NSFC 11471300. The work of K. Zheng has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 703949, and was also partially supported by the Engineering and Physical Sciences Research Council (EPSRC) on a Programme Grant entitled “Singularities of Geometric Partial Differential Equations” reference number EP/K00865X/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yin.

Additional information

Communicated by J.Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Estimate of some elliptic system

Appendix A: Estimate of some elliptic system

In this appendix, we prove some estimates for the following elliptic system defined on \(B_1\subset {\mathbb {C}}^n\),

$$\begin{aligned} \triangle _g g_{i\bar{j}} - g^{k\bar{m}} g^{n\bar{l}} \frac{\partial g_{i\bar{m}}}{\partial z_n} \frac{\partial g_{k\bar{j}}}{\partial z_{\bar{l}}} = \lambda \rho _0^2 g_{i\bar{j}} + h_{\tilde{V},i\bar{j}} . \end{aligned}$$
(A.1)

When \(h=0\), this is the equation satisfied by the metric tensor of Kähler–Einstein metric. We always assume

$$\begin{aligned} \left| \lambda \rho _0^2\right| + \left\| h_{\tilde{V},i\bar{j}}\right\| _{C^0(B_1)}\le \Lambda . \end{aligned}$$
(A.2)

The methods used here are from the book of Giaquinta [4] and are by now classical. In contrast to the theorems in [4], we prove effective estimates instead of just regularity statements.

Remark

Note that in this appendix, the real dimension of the domain is 2n, instead of n.

We first bound the \(L^2\) norm of the gradient of \(g_{i\bar{j}}\).

Lemma A.1

Suppose that \(g_{i\bar{j}}\) are some smooth complex-valued functions defined on \(B_1\subset {\mathbb {C}}^n\) solving (A.1) whose coefficients satisfy (A.2). If for some \(\sigma >0\), we have

$$\begin{aligned} \sigma ^{-1} g_{i\bar{j}}\le \delta _{ij}\le \sigma g_{i\bar{j}} \quad \text{ on } \quad B_1, \end{aligned}$$

then

$$\begin{aligned} \left\| \nabla g_{i\bar{j}}\right\| _{L^2(B_{3/4})}\le C \left( \sigma ,\Lambda ,\left\| g_{i\bar{j}}\right\| _{C^\alpha (B_1)}\right) . \end{aligned}$$

Proof

For any point \(x_0\) in \(B_{3/4}\) and \(R>0\) to be determined in the proof, let \(\eta \) be some smooth cut-off function supported in \(B_R(x_0)\) with \(\eta \equiv 1\) in \(B_{R/2}(x_0)\) and \(\left| \nabla \eta \right| \le CR^{-1}\). Multiplying both sides of (A.1) by \((g_{i\bar{j}}-g_{i\bar{j}}(x_0)) \eta ^2\) and freezing the coefficients of the leading term in (A.1) gives

$$\begin{aligned} 0= & {} g^{k\bar{l}}(x_0) \partial _k\bar{\partial }_l g_{i\bar{j}} (g_{i\bar{j}}-g_{i\bar{j}}(x_0)) \eta ^2 \nonumber \\- & {} (g^{k\bar{l}}(x_0)-g^{k\bar{l}}) \partial _k \bar{\partial }_l g_{i\bar{j}} (g_{i\bar{j}}-g_{i\bar{j}}(x_0)) \eta ^2 \nonumber \\- & {} (g\cdot g\cdot D g\cdot D g +\lambda \rho _0^2 g +h) \cdot (g_{i\bar{j}}-g_{i\bar{j}}(x_0)) \eta ^2 . \end{aligned}$$
(A.3)

Note that we have omitted subscripts in the above computation when they are not essential to the proof.

By the Hölder continuity of \(g_{i\bar{j}}\), we have

$$\begin{aligned} \left| g_{i\bar{j}}-g_{i\bar{j}}(x_0)\right| \le C R^{\alpha }. \end{aligned}$$
(A.4)

Integration by parts of (A.3), (A.4) and Young’s inequality imply that

$$\begin{aligned} \int \left| D g\right| ^2 \eta ^2\le & {} C \int R^\alpha \left| D g\right| \eta \left| \nabla \eta \right| + R^\alpha \left| D g\right| ^2 \eta ^2 \\&+\ C\int R^{2\alpha } \left| D g\right| \eta \left| \nabla \eta \right| + R^\alpha \left| D g\right| ^2 \eta ^2 + C R^{2n+\alpha } \\\le & {} \left( \frac{1}{2}+ CR^\alpha \right) \int \left| D g\right| ^2 \eta ^2 + CR^{2\alpha } \int \left| \nabla \eta \right| ^2 + C R^{2n+\alpha }. \end{aligned}$$

Now we can choose R so small (depending only on \(\sigma , \alpha \) and the Hölder norm of \(g_{i\bar{j}}\)) that the first term in the right hand side is absorbed by the left hand side to give

$$\begin{aligned} \int _{B_{R/2}(x_0)} \left| D g\right| ^2 dx \le CR^{2n-2+2\alpha }\le C. \end{aligned}$$
(A.5)

The lemma then follows from the above inequality by covering \(B_{3/4}\) by balls of radius R. \(\square \)

Next, we prove \(C^\gamma \) estimate of \(g_{i\bar{j}}\) for any \(\alpha<\gamma <1\).

Lemma A.2

For \(g_{i\bar{j}}\) as in Lemma A.1 and any \(\alpha<\gamma <1\), we have

$$\begin{aligned} \left\| g_{i\bar{j}}\right\| _{C^{\gamma }(B_{3/4})} \le C\left( \sigma ,\Lambda ,\gamma ,\left\| g_{i\bar{j}}\right\| _{C^\alpha (B_1)}\right) . \end{aligned}$$

Proof

For any \(x_0\in B_{3/4}\) and \(R\le 1/4\), let \(v_{i\bar{j}}\) be the solution of

$$\begin{aligned} \left\{ \begin{array}[]{l@{\quad }l} g^{k\bar{l}}(x_0) \partial _k \bar{\partial }_l v_{i\bar{j}} =0 &{} \quad \text{ on } \quad B_R(x_0) \\ v_{i\bar{j}}= g_{i\bar{j}} &{}\quad \text{ on } \quad \partial B_R(x_0). \end{array} \right. \end{aligned}$$

By Theorem 2.1 on page 78 of [4] (applied to \(Dv_{i\bar{j}}\)), there is a constant depending only on \(\sigma \) such that for \(0<\rho <R\),

$$\begin{aligned} \int _{B_{\rho }(x_0)} \left| Dv_{i\bar{j}}\right| ^2 \le C\left( \frac{\rho }{R}\right) ^{2n} \int _{B_R(x_0)} \left| Dv_{i\bar{j}}\right| ^2. \end{aligned}$$
(A.6)

Setting \(w_{i\bar{j}}=g_{i\bar{j}}-v_{i\bar{j}}\), we get (using (A.6))

$$\begin{aligned}&\int _{B_{\rho }(x_0)} \left| Dg_{i\bar{j}}\right| ^2 \nonumber \\&\quad \le \int _{B_{\rho }(x_0)} \left| Dv_{i\bar{j}}\right| ^2+ \int _{B_{\rho }(x_0)} \left| Dw_{i\bar{j}}\right| ^2\nonumber \\&\quad \le C\left( \frac{\rho }{R}\right) ^{2n} \int _{B_{R}(x_0)} \left| Dv_{i\bar{j}}\right| ^2 + C \int _{B_{\rho }(x_0)} \left| Dw_{i\bar{j}}\right| ^2 \nonumber \\&\quad \le C\left( \frac{\rho }{R}\right) ^{2n} \int _{B_{R}(x_0)} \left| Dg_{i\bar{j}}\right| ^2 + C \int _{B_{R}(x_0)} \left| Dw_{i\bar{j}}\right| ^2. \end{aligned}$$
(A.7)

Using the equation satisfied by \(v_{i\bar{j}}\), we may rewrite (A.1) as follows

$$\begin{aligned} g^{k\bar{l}}(x_0) \partial _k\bar{\partial }_l (g_{i\bar{j}}-v_{i\bar{j}})= -(g^{k\bar{l}}-g^{k\bar{l}}(x_0))\partial _k\bar{\partial }_l g_{i\bar{j}} + g\cdot g\cdot D g \cdot D g + \lambda \rho _0^2 g + h. \end{aligned}$$

Since \(w_{i\bar{j}}\) vanishes on \(\partial B_R(x_0)\), we can use it as the test function of the above equation to obtain

$$\begin{aligned} \int _{B_R(x_0)} \left| Dw_{i\bar{j}}\right| ^2\le & {} C \int _{B_R(x_0)} \partial _k \bar{\partial }_l g_{i\bar{j}} \left( w (g^{k\bar{l}}-g^{k\bar{l}}(x_0)) \right) + \left| w\right| \left| D g\right| ^2 + \left| w\right| \\\le & {} C \int _{B_R(x_0)} \left| D g\right| \left| \nabla w\right| \left| g^{k\bar{l}}-g^{k\bar{l}}(x_0)\right| + \left| w\right| \left| D g\right| ^2 + \left| w\right| . \end{aligned}$$

Using Young’s inequality, we get

$$\begin{aligned} \int _{B_R(x_0)} \left| Dw_{i\bar{j}}\right| ^2 \le C \int _{B_R(x_0)} \left| D g\right| ^2 \left( \left| g^{k\bar{l}}-g^{k\bar{l}}(x_0)\right| ^2 + \left| w\right| \right) + \left| w\right| . \end{aligned}$$
(A.8)

The maximum principle implies that \(\text{ osc }_{B_R(x_0)} v_{i\bar{j}} \le osc_{B_R(x_0)} g_{i\bar{j}}\), which implies that

$$\begin{aligned} \left\| w\right\| _{C^0(B_R(x_0))}\le \text{ osc }_{B_R(x_0)} v_{i\bar{j}}+ \text{ osc }_{B_R(x_0)} g_{i\bar{j}}\le C R^\alpha . \end{aligned}$$
(A.9)

Putting (A.7), (A.8) and (A.9) together yields the following decay estimate

$$\begin{aligned} \int _{B_\rho (x_0)} \left| Dg\right| ^2 \le C\left( \left( \frac{\rho }{R}\right) ^{2n} + R^\alpha \right) \int _{B_R(x_0)} \left| Dg\right| ^2 + C R^{2n+\alpha }. \end{aligned}$$

Dividing both sides of the above equation by \(\rho ^{2n-2}\) and setting \(\rho /R=\tau \) give

$$\begin{aligned} \rho ^{2-2n}\int _{B_\rho (x_0)} \left| Dg\right| ^2 \le \left[ C (1+ \tau ^{-2n} R^{\alpha }) \right] \tau ^2 R^{2-2n}\int _{B_R(x_0)} \left| Dg\right| ^2 + C \tau ^{2-2n} R^2. \end{aligned}$$

By picking \(\tau \) small so that \(2C \tau ^{(2-2\gamma )}=1\) and then \(R_1\) small so that \(1+\tau ^{-n}R^\alpha <2\) for all \(R<R_1\), we have

$$\begin{aligned} \rho ^{2-2n}\int _{B_\rho (x_0)} \left| Dg\right| ^2 \le \tau ^{2\gamma } R^{2-2n}\int _{B_R(x_0)} \left| Dg\right| ^2 + C(\gamma ) R^2 \end{aligned}$$

for \(R<R_1\). From here, a routine iteration shows that

$$\begin{aligned} \rho ^{2-2n}\int _{B_\rho (x_0)} \left| Dg\right| ^2 \le C \rho ^{2\gamma }. \end{aligned}$$

Hence, by the Hölder inequality and the equivalence between the Companato space and the Hölder space, we have

$$\begin{aligned} \left\| g_{i\bar{j}}\right\| _{C^\gamma (B_{3/4})}\le C\left( \sigma ,\Lambda ,\gamma , \left\| g_{i\bar{j}}\right\| _{C^\alpha (B_1)}\right) . \end{aligned}$$

\(\square \)

Finally, we prove the \(C^{1,\alpha }\) estimate.

Lemma A.3

For \(g_{i\bar{j}}\) as in Lemma A.1, there exists some \(\alpha '\in (0,1)\) such that

$$\begin{aligned} \left\| g_{i\bar{j}}\right\| _{C^{1,\alpha '}(B_{1/2})} \le C\left( \sigma ,\Lambda ,\left\| g_{i\bar{j}}\right\| _{C^\alpha (B_1)}\right) . \end{aligned}$$

Proof

For any \(x_0\in B_{1/2}\) and \(R\le 1/4\), as in the proof of Lemma A.2, let \(v_{i\bar{j}}\) be the solution of

$$\begin{aligned} \left\{ \begin{array}[]{l@{\quad }l} g^{k\bar{l}}(x_0) \partial _k \bar{\partial }_l v_{i\bar{j}} =0 &{} \quad \text{ on } \quad B_R(x_0) \\ v_{i\bar{j}}= g_{i\bar{j}} &{}\quad \text{ on } \quad \partial B_R(x_0). \end{array} \right. \end{aligned}$$

Again, applying Theorem 2.1 on page 78 of [4] to \(Dv_{i\bar{j}}\), we get a constant depending only on \(\sigma \) such that

$$\begin{aligned} \int _{B_{\rho }(x_0)} \left| Dv_{i\bar{j}}- (Dv_{i\bar{j}})_{x_0,\rho }\right| ^2 \le C\left( \frac{\rho }{R}\right) ^{2n+2} \int _{B_R(x_0)} \left| Dv_{i\bar{j}}-(Dv_{i\bar{j}})_{x_0,R}\right| ^2. \end{aligned}$$
(A.10)

Here \((u)_{x,r}\) means the average of u in the ball \(B_r(x)\).

Next, we set \(w_{i\bar{j}}=g_{i\bar{j}}-v_{i\bar{j}}\) on \(B_R(x_0)\). Triangle inequalities and (A.10) imply that

$$\begin{aligned}&\int _{B_{\rho }(x_0)} \left| Dg_{i\bar{j}}- (Dg_{i\bar{j}})_{x_0,\rho }\right| ^2 \nonumber \\&\quad \le \int _{B_{\rho }(x_0)} \left| Dv_{i\bar{j}}- (Dv_{i\bar{j}})_{x_0,\rho }\right| ^2+ \int _{B_{\rho }(x_0)} \left| Dw_{i\bar{j}}- (Dw_{i\bar{j}})_{x_0,\rho }\right| ^2\nonumber \\&\quad \le C\left( \frac{\rho }{R}\right) ^{2n+2} \int _{B_{R}(x_0)} \left| Dv_{i\bar{j}}- (Dv_{i\bar{j}})_{x_0,R}\right| ^2 + C \int _{B_{\rho }(x_0)} \left| Dw_{i\bar{j}}\right| ^2 \nonumber \\&\quad \le C\left( \frac{\rho }{R}\right) ^{2n+2} \int _{B_{R}(x_0)} \left| Dg_{i\bar{j}}- (Dg_{i\bar{j}})_{x_0,R}\right| ^2 + C \int _{B_{R}(x_0)} \left| Dw_{i\bar{j}}\right| ^2. \end{aligned}$$
(A.11)

Using \(w_{i\bar{j}}\) as the test function of (A.1) as in the proof of Lemma A.2 gives

$$\begin{aligned} \int _{B_R(x_0)} \left| Dw_{i\bar{j}}\right| ^2\le & {} C \int _{B_R(x_0)} \partial _k \bar{\partial }_l g_{i\bar{j}} \left( w (g^{k\bar{l}}-g^{k\bar{l}}(x_0)) \right) + \left| w\right| \left| D g\right| ^2 + \left| w\right| \\\le & {} C \int _{B_R(x_0)} \left| D g\right| \left| \nabla w\right| \left| g^{k\bar{l}}-g^{k\bar{l}}(x_0)\right| + \left| w\right| \left| D g\right| ^2 + \left| w\right| . \end{aligned}$$

The Young’s inequality and the fact that \(g_{i\bar{j}}\) lies in \(C^\gamma (B_{3/4})\) imply that

$$\begin{aligned} \int _{B_R(x_0)} \left| Dw\right| ^2\le & {} C R^{\gamma } \int _{B_R(x_0)} \left| D g\right| ^2 + CR^{2n+\gamma }. \end{aligned}$$

Notice that we have proved (see (A.5))

$$\begin{aligned} \int _{B_R(x_0)} \left| Dg\right| ^2 \le C R^{2n-2+2\gamma } \end{aligned}$$

in the proof of Lemma A.2. By Lemma A.2, we can choose and fix \(\gamma \) so that

$$\begin{aligned} \int _{B_R(x_0)}\left| Dw\right| ^2 \le C R^{2n+\gamma '} \end{aligned}$$
(A.12)

for some \(\gamma '>0\) (small). Combining (A.11) and (A.12), we get

$$\begin{aligned}&\rho ^{-2n}\int _{B_{\rho }(x_0)} \left| Dg_{i\bar{j}}- (Dg_{i\bar{j}})_{x_0,\rho }\right| ^2 \le C\left( \frac{\rho }{R}\right) ^2 R^{-2n} \int _{B_R(x_0)}\left| Dg_{i\bar{j}}- (Dg_{i\bar{j}})_{x_0,\rho }\right| ^2 \\&\quad + C(R/\rho )^{2n} R^{\gamma '}. \end{aligned}$$

As before, picking \(\tau \in (0,1)\) with \(C \tau ^{2-\gamma '}=1\) and setting \(\rho =\tau R\), we get

$$\begin{aligned} \rho ^{-2n}\int _{B_{\rho }(x_0)} \left| Dg_{i\bar{j}}- (Dg_{i\bar{j}})_{x_0,\rho }\right| ^2 \le \tau ^{\gamma '} R^{-2n} \int _{B_R(x_0)}\left| Dg_{i\bar{j}}- (Dg_{i\bar{j}})_{x_0,\rho }\right| ^2 + C(\tau ) R^{\gamma '}. \end{aligned}$$

Iteration again implies that

$$\begin{aligned} \int _{B_{\rho }(x_0)} \left| Dg_{i\bar{j}}- (Dg_{i\bar{j}})_{x_0,\rho }\right| ^2 \le C \rho ^{2n+\gamma '}, \end{aligned}$$

which concludes the proof of the lemma by Theorem 1.2 in Chapter III of [4]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Zheng, K. Expansion formula for complex Monge–Ampère equation along cone singularities. Calc. Var. 58, 50 (2019). https://doi.org/10.1007/s00526-019-1498-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1498-z

Mathematics Subject Classification

Navigation