Skip to main content
Log in

Sobolev regularity for convex functionals on BD

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish the first Sobolev regularity and uniqueness results for minimisers of autonomous, convex variational integrals of linear growth which depend on the symmetric rather than the full gradient. This extends the results available in the literature for the BV-setting to the case of functionals whose full gradients are a priori not known to exist as finite matrix-valued Radon measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here, because f is autonomous, convex with the lower bound of (1.2), it is irrelevant whether we choose the weak*- or \({\text {L}}^{1}\)-relaxation; indeed, they coincide in this case.

  2. in the sense that if \(f_{\eta }(\xi _{1})=f_{\eta }(\xi _{2})=f_{\eta }(\lambda \xi _{1}+(1-\lambda )\xi _{2})\) for \(\xi _{1},\xi _{2}\in {\mathbb {R}}^{n}\) and \(0<\lambda <1\), then \(\xi _{1}=\xi _{2}\).

  3. In the sense that \(\mu _{k}{\mathop {\rightharpoonup }\limits ^{*}}\mu \) and \(|\mu _{k}|(\Omega )\rightarrow |\mu |(\Omega )\) as \(k\rightarrow \infty \).

References

  1. Acerbi, E., Fusco, N.: Regularity for minimizers of nonquadratic functionals: the case \(1<p<2\). J. Math. Anal. Appl. 140(1), 115–135 (1989)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L., Coscia, A., Dal Maso, G.: Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139(3), 201–238 (1997)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  4. Anzellotti, G.: The Euler equation for functionals with linear growth. Trans. Am. Math. Soc. 290(2), 483–501 (1985)

    Article  MathSciNet  Google Scholar 

  5. Anzellotti, G., Giaquinta, M.: Existence of the displacement field for an elastoplastic body subject to Hencky’s law and von Mises yield condition. Manuscr. Math. 32(1–2), 101–136 (1980)

    Article  MathSciNet  Google Scholar 

  6. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften, vol. 314. Springer, Berlin (1996)

    Book  Google Scholar 

  7. Babadjian, J.-F.: Traces of functions of bounded deformation. Indiana Univ. Math. J. 64(4), 1271–1290 (2015)

    Article  MathSciNet  Google Scholar 

  8. Beck, L., Schmidt, T.: On the Dirichlet problem for variational integrals in BV. J. Reine Angew. Math. 674, 113–194 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Bildhauer, M.: Convex Variational Problems: Linear, Nearly Linear and Anisotropic Growth Conditions. Lecture Notes in Mathematics, vol. 1818, p. x+217. Springer, Berlin (2003)

    Book  Google Scholar 

  10. Bildhauer, M.: A priori gradient estimates for bounded generalised solutions of a class of variational problems with linear growth. J. Convex Ana. 9, 117–137 (2002)

    MATH  Google Scholar 

  11. Bildhauer, M., Fuchs, M.: Partial regularity for variational integrals with (s, q)-growth. Calc. Var. 13, 537–560 (2001)

    Article  MathSciNet  Google Scholar 

  12. Bildhauer, M., Fuchs, M.: On a class of variational integrals with linear growth satisfying the condition of \(\mu \)-ellipticity. Rend. Mat. Appl. 22(7), 249–274 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Bildhauer, M., Fuchs, M., Mingione, G.: A priori gradient bounds and local \(\text{ C }^{1,\alpha }\)-estimates for (double) obstacle problems under non-standard growth conditions. Z. Anal. Anwend. 20(4), 959–985 (2001)

    Article  Google Scholar 

  14. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for \(W^{s,p}\) when \(s\uparrow 1\) and applications. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87, 77–101 (2002)

    Article  MathSciNet  Google Scholar 

  15. Conti, S., Focardi, M., Iurlano, F.: Which special functions of bounded deformation have bounded variation? Proc. R. Soc. Edinb. Sect. A 148(1), 33–50 (2018)

    Article  MathSciNet  Google Scholar 

  16. Carozza, M., Kristensen, J., Passarelli Di Napoli, A.: Higher differentiability of minimizers of convex variational integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(3), 395–411 (2011)

    Article  MathSciNet  Google Scholar 

  17. Carozza, M., Kristensen, J., di Napoli, A.P.: Regularity of minimizers of autonomous convex variational integrals. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13(4), 1065–1089 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Carozza, M., Kristensen, J., di Napoli, A.P.: On the validity of the Euler-Lagrange system. Commun. Pure Appl. Anal. 14(1), 51–62 (2015)

    Article  MathSciNet  Google Scholar 

  19. Christiansen, E., Matthies, H., Strang, G.: The Saddle Point of a Differential Program. Energy Methods in Finite Element Analysis, pp. 309–318. Wiley, Chichester (1979)

    Google Scholar 

  20. Conti, S., Faraco, D., Maggi, F.: A new approach to counterexamples to \(\text{ L }:^{1}\)-estimates: Korns inequality, geometric rigidity, and regularity for gradients of separately convex functions. Arch. Ration. Mech. Anal. 175, 287–300 (2005)

    Article  MathSciNet  Google Scholar 

  21. Demengel, F., Temam, R.: Convex functions of a measure and applications. Indiana Univ. Math. J. 33(5), 673–709 (1984)

    Article  MathSciNet  Google Scholar 

  22. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  23. Esposito, L., Leonetti, F., Mingione, G.: Sharp regularity for functionals with (p, q)-growth. J. Differ. Equ. 204, 5–55 (2001)

    Article  MathSciNet  Google Scholar 

  24. Finn, R.: Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature. J. Anal. Math. 14, 139–160 (1965)

    Article  MathSciNet  Google Scholar 

  25. Fuchs, M., Mingione, G.: Full \(\text{ C }^{1,\alpha }\)-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscr. Math. 102(2), 227–250 (2000)

    Article  Google Scholar 

  26. Fuchs, M., Seregin, G.: Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Annales Universitatis Saraviensis. Series Mathematicae, vol. 10, no. 1, iv+283 pp. (1999)

  27. Giaquinta, M., Modica, G., Souček, J.: Functionals with linear growth in the calculus of variations II. Comment. Math. Univ. Carol. 20, 157–172 (1979)

    MathSciNet  MATH  Google Scholar 

  28. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co. Inc, River Edge (2003)

    Book  Google Scholar 

  29. Gmeineder, F.: Regularity Theory for Variational Problems on BD. DPhil Thesis, University of Oxford (2017)

  30. Gmeineder, F.: Regularity for the Dirichlet problem on BD (in preparation)

  31. Giaquinta, M., Modica, G., Souček, J.: Functionals with linear growth in the calculus of variations. Comment. Math. Univ. Carol. 20, 143–172 (1979)

    MathSciNet  MATH  Google Scholar 

  32. Goffman, C., Serrin, J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159–178 (1964)

    Article  MathSciNet  Google Scholar 

  33. Kazaniecki, K., Stolyarov, D.M., Wojciechowski, M.: Anisotropic Ornstein non inequalities. Anal. PDE 10, 351–366 (2017)

    Article  MathSciNet  Google Scholar 

  34. Kirchheim, B., Kristensen, J.: On rank one convex functions that are homogeneous of degree one. Arch. Ration. Mech. Anal. 221(1), 527–558 (2016)

    Article  MathSciNet  Google Scholar 

  35. Marcellini, P.: Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equ. 90, 1–30 (1991)

    Article  MathSciNet  Google Scholar 

  36. Marcellini, P.: Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 105, 296–333 (1993)

    Article  MathSciNet  Google Scholar 

  37. Mingione, G.: The singular set of solutions to non-differentiable elliptic systems. Arch. Ration. Mech. Anal. 166(4), 287–301 (2003)

    Article  MathSciNet  Google Scholar 

  38. Ornstein, D.: A non-equality for differential operators in the \(L^{1}\)-norm. Arch. Ration. Mech. Anal. 11, 40–49 (1962)

    Article  MathSciNet  Google Scholar 

  39. Reshetnyak, YuG: Weak convergence of completely additive vector functions on a set. Sib. Math. J. 9(6), 1039–1045 (1968)

    Article  Google Scholar 

  40. Santi, E.: Sul problema al contorno per l’equazione della superfici di area minima su domini limitati qualunque. Ann. Univ. Ferrara, N. Ser. Sez VII(17), 13–26 (1972)

    MATH  Google Scholar 

  41. Seregin, G.: Variation-difference schemes for problems in the mechanics of ideally elastoplastic media. USSR Comput. Math. Math. Phys. 25, 153–165 (1985) (trans: Zh. Vychisl. Mat. Mat. Fiz. 25, 237–253 (1985))

    Article  Google Scholar 

  42. Seregin, G.: Differential properties of solutions of variational problems for functionals of linear growth. J. Sov. Math. 64, 1256–1277 (1993) (trans: Probl. Mat. Anal. 11, 51–79 (1990))

    Article  Google Scholar 

  43. Seregin, G.: Two-dimensional variational problems of the theory of plasticity. Izv. Math. 60, 179–216 (1996) (trans: Izv. Ross. Akad. Nauk, Ser. Mat. 60, 175–210 (1996))

    Article  MathSciNet  Google Scholar 

  44. Seregin, G.: Differentiability properties of weak solutions of certain variational problems in the theory of perfect elastoplastic plates. Appl. Math. Optim. 28, 307–335 (1993)

    Article  MathSciNet  Google Scholar 

  45. Smith, K.T.: Formulas to represent functions by their derivatives. Math. Ann. 188, 53–77 (1970)

    Article  MathSciNet  Google Scholar 

  46. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the Assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton (1993)

  47. Serrin, J.: The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. R. Soc. Lond. Ser. A 264, 413–496 (1969)

    Article  MathSciNet  Google Scholar 

  48. Strang, G., Temam, R.: Functions of bounded deformation. Arch. Ration. Mech. Anal. 75(1), 7–21 (1980/81)

  49. Suquet, P.-M.: Sur un nouveau cadre fonctionnel pour les quations de la plasticit (French) C. R. Acad. Sci. Paris Sr. A-B 286(23), A1129–A1132 (1978)

    Google Scholar 

  50. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana, vol. 18 (2007)

  51. Triebel, H.: Theory of function spaces. Reprint of 1983 edition. Also published in 1983 by Birkhäuser Verlag [MR0781540]. Modern Birkhäuser Classics, 285 pp. Birkhäuser/Springer Basel AG, Basel (2010)

  52. Van Schaftingen, J.: Limiting Sobolev inequalities for vector fields and canceling linear differential operators. J. Eur. Math. Soc. (JEMS) 15(3), 877–921 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is grateful to the Hausdorff Centre in Mathematics, Bonn, for financial support. The authors moreover express their thanks to the referee, whose careful reading and suggestions lead to a substantial improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kristensen.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The results of this paper appear as an extended and partially improved version of the results as presented in the first author’s doctoral thesis [29]. As such, financial support through the EPRSC is gratefully acknowledged. Moreover, the authors would like to thank Gregory Seregin for discussions related to this work.

Appendix

Appendix

1.1 Extensions of Theorem 1.2 to nonautonomous problems

Let us now briefly comment on the situation where f has additional x-dependence. If \(f\in {\text {C}}^{2}({\overline{\Omega }}\times {\mathbb {R}}_{{\text {sym}}}^{n\times n})\) is an integrand that satisfies essentially the assumptions of [9, Ass. 4.22], that is, f satisfies (1.2) uniformly in x together with

$$\begin{aligned} {\left\{ \begin{array}{ll} \sup _{x\in {\overline{\Omega }}}\sup _{\xi \in {\mathbb {R}}_{{\text {sym}}}^{n\times n}}\max \{|{\text {D}}_{\xi }f(x,\xi )|,|{\text {D}}_{x}^{2}{\text {D}}_{\xi }f(x,\xi )|,|{\text {D}}_{x}{\text {D}}_{\xi }f(x,\xi )|\}<\infty ,\\ \lambda \frac{|\xi |^{2}}{(1+|z|^{2})^{\mu /2}}\le \langle {\text {D}}_{\xi }^{2}f(z)\xi ,\xi \rangle \le \Lambda \frac{|\xi |^{2}}{(1+|z|^{2})^{1/2}},\\ |\langle {\text {D}}_{x}{\text {D}}_{\xi }^{2}f(x,\xi )\eta ,\eta '\rangle |\le C(|\langle {\text {D}}_{\xi }^{2}f(x,\xi )\eta ,\eta '\rangle | + |\eta |\,|\eta '|/(1+|\xi |^{2})) \end{array}\right. } \end{aligned}$$
(4.1)

for all \(x\in {\overline{\Omega }},\eta ,\eta ',\xi ,z\in {\mathbb {R}}_{{\text {sym}}}^{n\times n}\), then the results of this paper carry over in a straightforward manner to the situation of interest; in fact, as we work with finite differences, these assumptions can even be weakened, but this is left to the interested reader; also see the discussion in [8, App. C]. If the smoothness of the x-dependence is diminished, a merger of the arguments outlined in this work with [37] leads to the correspondingly modified theorems.

1.2 Proofs of auxiliary results

In this section, we provide the proofs of minor auxiliary results used in the main body of the paper. We begin with the

Proof of Proposition 2.2

Since the embedding we aim for is of local nature, it suffices to give estimates for maps \(u\in {\text {C}}_{c}^{\infty }({\mathbb {R}}^{n};{\mathbb {R}}^{n})\) which are compactly supported in a given ball \({\text {B}}={\text {B}}(x_{0},R)\); the full statement then follows by smooth approximation and is left to the reader. Let \(0<\alpha <1\) be given. We have for all \(0<s<1\)

$$\begin{aligned}{}[u]_{{\text {W}}^{s,\frac{n}{n-1+s}}({\mathbb {R}}^{n};{\mathbb {R}}^{n})}&\le C(n,s)\Vert \varvec{\varepsilon }(u)\Vert _{{\text {L}}^{1}({\mathbb {R}}^{n};{\mathbb {R}}_{{\text {sym}}}^{n\times n})}, \end{aligned}$$

since the symmetric gradient operator is elliptic and cancelling, cf. [52, Thm. 8.1, Prop. 6.4]. Now, for all \(h\in {\mathbb {R}}^{n}\) with \(|h|<1\) sufficiently small, \(u(x+h)\) is supported in \({\text {B}}(x_{0},2R)\). Then, by Hölder’s inequality and some \(\alpha<t<1\),

$$\begin{aligned} \int _{{\mathbb {R}}^{n}}|u(x+h)-u(x)|{\text {d}}x&\le c(R,n,t)\Big (\int _{{\text {B}}(x_{0},2R)}|u(x+h)-u(x)|^{\frac{n}{n-1+t}}{\text {d}}x\Big )^{\frac{n-1+t}{n}} \\&\le C(R,n,t)\Vert u\Vert _{{\text {B}}_{\frac{n}{n-1+t},\infty }^{t}({\mathbb {R}}^{n};{\mathbb {R}}^{n})}|h|^{t}\\&\le C(R,n,t)\Vert u\Vert _{{\text {W}}^{t,\frac{n}{n-1+t}}({\mathbb {R}}^{n};{\mathbb {R}}^{n})}|h|^{t} \\&\le C(R,n,t)\Vert \varvec{\varepsilon }(u)\Vert _{{\text {L}}^{1}({\mathbb {R}}^{n};{\mathbb {R}}_{{\text {sym}}}^{n\times n})}|h|^{t}. \end{aligned}$$

But since \(t>\alpha \) and \(|h|<1\), we obtain \(u\in {\text {B}}_{1,\infty }^{t}({\mathbb {R}}^{n};{\mathbb {R}}^{n})\) and standard inclusions between Besov and Sobolev-Slobodeckjiĭ spaces imply that \([u]_{{\text {W}}^{\alpha ,1}({\mathbb {R}}^{n};{\mathbb {R}}^{n})}\le C \Vert \varvec{\varepsilon }(u)\Vert _{{\text {L}}^{1}({\mathbb {R}}^{n};{\mathbb {R}}_{{\text {sym}}}^{n\times n})}\) and the proof is complete. \(\square \)

Proof of Lemma 2.4

By [1, Lemma 2.2], for every \(-\frac{1}{2}< \gamma <0\) and \(\mu \ge 0\) there exists a constant \(c=c(M)>0\) such that for all \(\xi ,\eta \in {\mathbb {R}}^{M}\) there holds

$$\begin{aligned} (2\gamma +1)|\xi -\eta |\le \frac{|(\mu ^{2}+|\xi |^{2})^{\gamma }\xi -(\mu ^{2}+|\eta |^{2})^{\gamma }\eta |}{(\mu ^{2}+|\xi |^{2}+|\eta |^{2})^{\gamma }}\le \frac{c(M)}{2\gamma +1}|\xi -\eta |. \end{aligned}$$

Applying this with \(\mu =1\) and \(\gamma =(1-\alpha )/2\) yields the claim as \(-\frac{1}{2}<\gamma <0\) if and only if \(1<\alpha <2\).

Now let \(\xi \in {\mathbb {R}}^{M}\) with \(|\xi |\ge 1\) and let \(1<\alpha <2\). Then \((1-\alpha )/2<0\). Hence, since \(t\mapsto t^{(1-\alpha )/2}\) is monotonically decreasing on \((0,\infty )\),

$$\begin{aligned} |\xi | \ge 1&\Rightarrow 2|\xi |^{2} \ge 1+|\xi |^{2} \Rightarrow 2^{\frac{1-\alpha }{2}}|\xi |^{1-\alpha }\le (1+|\xi |^{2})^{\frac{1-\alpha }{2}}\\&\Rightarrow |\xi |^{2-\alpha }\le 2^{\frac{\alpha -1}{2}}|V_{\alpha }(\xi )| {\mathop {\le }\limits ^{1<\alpha <2}}\sqrt{2}|V_{\alpha }(\xi )|. \end{aligned}$$

Since \(1<\alpha <2\) and \(|\xi |\ge 1\), we have \(|\xi |^{2-\alpha }\le |\xi |\) and thus \(\min \{|\xi |,|\xi |^{2-\alpha }\}\le \sqrt{2}|V_{\alpha }(\xi )|\) in this case. Now, if \(|\xi |<1\), then

$$\begin{aligned} 2^{\frac{1-\alpha }{2}}\le (1+|\xi |^{2})^{\frac{1-\alpha }{2}}\Rightarrow 2^{\frac{1-\alpha }{2}}|\xi |\le |V_{\alpha }(\xi )|\Rightarrow |\xi |\le \sqrt{2}|V_{\alpha }(\xi )|, \end{aligned}$$

and hence \(\min \{|\xi |,|\xi |^{2-\alpha }\}\le \sqrt{2}|V_{\alpha }(\xi )|\) holds, too. Therefore \(\min \{|\xi |,|\xi |^{2-\alpha }\}\le \sqrt{2}|V_{\alpha }(\xi )|\) holds for all \(\xi \in {\mathbb {R}}^{M}\). Lastly if the measurable map \(u:\Omega \rightarrow {\mathbb {R}}^{M}\) is such that \(V_{\alpha }(u)\in {\text {L}}^{p}(\Omega ;{\mathbb {R}}^{m})\), then we have

$$\begin{aligned} \int _{\Omega }|u|^{(2-\alpha )p}{\text {d}}x&= \int _{\Omega \cap \{|u|\le 1\}}|u|^{(2-\alpha )p}{\text {d}}x + \int _{\Omega \cap \{|u|> 1\}}|u|^{(2-\alpha )p}{\text {d}}x \\&\le {\mathscr {L}}^{n}(\Omega )+c(p)\int _{\Omega }|V_{\alpha }(u)|^{p}{\text {d}}x \end{aligned}$$

The proof is complete. \(\square \)

1.3 Relaxation

As mentioned in the introduction, we now give justification for some results used in the main part of the paper. The primary aim of this section is to explain formula (1.6) and the existence of generalised minima. We thus recap the requisite foundational theory of functions of measures as exposed in [3, Section 2.6], see also [4, 21].

1.3.1 Convex functions of measures

Given \(m\in {\mathbb {N}}\), let \(f:{\mathbb {R}}^{m}\rightarrow {\mathbb {R}}_{\ge 0}{\mathbb {R}}\) be a convex function of linear growth, i.e., f satisfies (1.2) with the obvious modifications. In this situation, it can be shown that \(f^{\infty }\) defined by (1.5) is well-defined, convex and positively 1-homogeneous. Let \(\mu \) be an \({\mathbb {R}}^{m}\)-valued Radon measure of finite total variation on an open and bounded set \(\Omega \subset {\mathbb {R}}^{n}\). We denote

$$\begin{aligned} \mu =\mu ^{a}+\mu ^{s}=\frac{{\text {d}}\mu }{{\text {d}}{\mathscr {L}}^{n}}{\mathscr {L}}^{n}+ \frac{{\text {d}}\mu }{{\text {d}}|\mu ^{s}|}|\mu ^{s}| \end{aligned}$$

its Radon–Nikodým decomposition into its absolutely continuous and singular parts \(\mu ^{a},\mu ^{s}\) with respect to Lebesgue measure, where \(|\mu ^{s}|\) denotes the total variation measure of \(\mu ^{s}\). We then define a new Radon measure \(f[\mu ]\) by

$$\begin{aligned} f[\mu ](A):=\int _{A}f\left( \frac{{\text {d}}\mu }{{\text {d}}{\mathscr {L}}^{n}}\right) {\text {d}}{\mathscr {L}}^{n}+\int _{A}f^{\infty }\left( \frac{{\text {d}}\mu }{{\text {d}}|\mu ^{s}|}\right) {\text {d}}|\mu ^{s}|, \qquad A\in {\mathscr {B}}(\Omega ), \end{aligned}$$
(4.2)

where \({\mathscr {B}}(\Omega )\) denotes the Borel-\(\sigma \)-algebra on \(\Omega \). We note that, by positive 1-homogeneity of \(f^{\infty }\), this gives rise to a well-defined measure indeed. Linking this to the area functional as required for the definition of area-strict convergence, for a given map \(u\in {\text {BD}}(\Omega )\), we have with \(f:=\sqrt{1+|\cdot |^{2}}\) that \(\sqrt{1+|{\text {E}}u|^{2}}(\Omega ):=f[{\text {E}}u](\Omega )\).

We turn to formula (1.6) for the relaxed functional as given for \({\text {BV}}\)-functions in [31] and find by a straightforward applications of the results of Goffman and Serrin [32] that, given an open and bounded Lipschitz subset \(\Omega \) of \({\mathbb {R}}^{n}\) together with a Dirichlet datum \(u_{0}\in {\text {LD}}(\Omega )\), we have

$$\begin{aligned} \overline{{\mathfrak {F}}}_{u_{0}}[u] = \inf \left\{ \liminf _{k\rightarrow \infty }{\mathfrak {F}}[u_{k}]:\; \begin{array}{c} (u_{k})\subset {\mathscr {D}}_{u_{0}}:=u_{0}+{\text {LD}}_{0}(\Omega ) \\ u_{k}\rightarrow u\;\text {in}\;{\text {L}}^{1}(\Omega ;{\mathbb {R}}^{n}) \end{array}\right\} . \end{aligned}$$
(4.3)

We pick a ball \({\text {B}}={\text {B}}(z,R)\) with \(\Omega \Subset {\text {B}}\). By surjectivity of the trace operator \({\text {Tr}}:{\text {LD}}(U)\rightarrow {\text {L}}_{{\mathcal {H}}^{n-1}}^{1}(\partial U;{\mathbb {R}}^{n})\) on bounded Lipschitz subsets U of \({\mathbb {R}}^{n}\) (see Sect. 2.2) that there exists \(v_{0}\in {\text {LD}}({\text {B}}{\setminus }{\overline{\Omega }})\) such that \({\text {Tr}}(v_{0})|_{\partial {\text {B}}}=0\) and \({\text {Tr}}(v_{0})|_{\partial \Omega }={\text {Tr}}(u_{0})|_{\partial \Omega }\) \({\mathcal {H}}^{n-1}\)—a.e. on \(\partial {\text {B}}\) or \(\partial \Omega \), respectively.

Given \(u\in {\text {BD}}(\Omega )\), we put

$$\begin{aligned} {\widetilde{u}}(x):={\left\{ \begin{array}{ll} u(x)&{}\;\text {for}\;x\in \Omega ,\\ v_{0}(x)&{}\;\text {for}\;x\in {\text {B}}{\setminus }{\overline{\Omega }}. \end{array}\right. } \end{aligned}$$
(4.4)

Then there holds \({\widetilde{u}}\in {\text {BD}}({\text {B}})\), and by the interior trace theorem as recalled in Sect. 2.2 we have

We insert this expression for \(\mu ={\text {E}}{\widetilde{u}}\) with \(A={\text {B}}\) into (4.2) (which equally holds for measures \(\mu \) on \({\mathbb {R}}^{n}\) subject to the obvious modifications) and obtain

$$\begin{aligned} f[{\text {E}}{\widetilde{u}}]({\text {B}})&= \int _{\Omega }f({\mathscr {E}}u){\text {d}}{\mathscr {L}}^{n}+\int _{\Omega }f\left( \frac{{\text {d}}{\text {E}}u}{{\text {d}}|{\text {E}}^{s}u|}\right) {\text {d}}|{\text {E}}^{s}u| \nonumber \\&+\quad \int _{\partial \Omega }f^{\infty }\left( {\text {Tr}}(v_{0}-u) \odot \nu _{\partial \Omega }\right) {\text {d}}{\mathcal {H}}^{n-1} + \int _{{\text {B}}{\setminus }{\overline{\Omega }}}f({\mathscr {E}}v_{0}){\text {d}}{\mathscr {L}}^{n}. \end{aligned}$$
(4.5)

If we then aim for minimising \(f[{\text {E}}{\widetilde{u}}]({\text {B}})\) over all \(u\in {\text {BD}}(\Omega )\), we see by constancy of the very last term of the preceding expression that it does not affect the minimiser \(v\in {\text {BD}}(\Omega )\), and thus a function \(v\in {\text {BD}}(\Omega )\) minimises \(f[{\text {E}}{\widetilde{u}}]({\text {B}})\) if and only if it minimises the relaxed functional given by (1.6).

We conclude this section by recalling two results due to Reshetnyak concerning the (lower semi-)continuity of convex functions of measures in the version as given in [8].

Proposition 4.1

(Reshetnyak, [39]) Let \(m\in {\mathbb {N}}\), \(\Omega \subset {\mathbb {R}}^{n}\) open and let \((\mu _{k})\) be a sequence of \({\mathbb {R}}^{m}\)-valued Radon measures of finite total variation which converges to a \({\mathbb {R}}^{m}\)-valued Radon measure of finite total variation \(\mu \) on \(\Omega \) in the weak*-sense. Moreover, assume that all measures \(\mu _{k}\) and \(\mu \) take values in some closed convex cone \(K\subset {\mathbb {R}}^{m}\). Then the following holds:

  1. (a)

    Lower Semicontinuity. If \({\widetilde{f}}:K \rightarrow [0,\infty ]\) is a lower semicontinuous function, then there holds

    $$\begin{aligned} \int _{\Omega }{\widetilde{f}}\left( \frac{{\text {d}}\mu }{{\text {d}}|\mu |}\right) {\text {d}}|\mu | \le \liminf _{k\rightarrow \infty }\int _{\Omega }{\widetilde{f}}\left( \frac{{\text {d}}\mu _{k}}{{\text {d}}|\mu _{k}|}\right) {\text {d}}|\mu _{k}|. \end{aligned}$$
  2. (b)

    If \(\mu _{k}\rightarrow \mu \) strictlyFootnote 3 as \(k\rightarrow \infty \) and \({\widetilde{f}}:K \rightarrow [0,\infty )\) is a continuous and 1-homogeneous function, then there holds

    $$\begin{aligned} \int _{\Omega }{\widetilde{f}}\left( \frac{{\text {d}}\mu }{{\text {d}}|\mu |}\right) {\text {d}}|\mu | = \lim _{k\rightarrow \infty }\int _{\Omega }{\widetilde{f}}\left( \frac{{\text {d}}\mu _{k}}{{\text {d}}|\mu _{k}|}\right) {\text {d}}|\mu _{k}|. \end{aligned}$$

1.3.2 Generalised minima: existence and characterisations

We now pass on to the verification of (4.3) and establish the existence of generalised minima.

Proposition 4.2

Let \(\Omega \) be an open and bounded Lipschitz subset of \({\mathbb {R}}^{n}\). Given a convex integrand \(f:{\mathbb {R}}_{{\text {sym}}}^{n\times n}\rightarrow {\mathbb {R}}\) with (1.2) and a boundary datum \(u_{0}\in {\text {LD}}(\Omega )\), define \(\overline{{\mathfrak {F}}}_{u_{0}}\) by (1.6). Then there exists a generalised minimiser of \({\mathfrak {F}}\) in the sense of (1.7).

Moreover, the following are equivalent for \(u\in {\text {BD}}(\Omega )\):

  1. (a)

    u is a generalised minimiser in the sense of (1.7).

  2. (b)

    u is the weak*-limit of an \({\mathfrak {F}}\)-minimising sequence \((u_{k})\subset {\mathscr {D}}_{u_{0}}(:= u_{0}+{\text {LD}}_{0}(\Omega ))\).

  3. (c)

    u is the strong \({\text {L}}^{1}\)-limit of an \({\mathfrak {F}}\)-minimising sequence \((u_{k})\subset {\mathscr {D}}_{u_{0}}\).

Proof

We begin with a preparatory remark. We choose an open and bounded Lipschitz subset \({\widetilde{\Omega }}\subset {\mathbb {R}}^{n}\) with \(\Omega \Subset {\widetilde{\Omega }}\). Given \(u_{0}\in {\text {LD}}(\Omega )\), by surjectivity of the trace operator on \({\text {LD}}\) (see Sect. 2.2), we may extend \(u_{0}\) by some \(v_{0}\in {\text {LD}}({\text {B}}{\setminus }{\overline{\Omega }})\) to a function \(\widetilde{u_{0}}\in {\text {LD}}_{0}({\widetilde{\Omega }})\). We now invoke the straightforward generalisation of [9, Chpt. 2.3.1] whose proof we leave to the interested reader:

Given \({\widetilde{\Omega }}\) and \(u_{0}\) as above, let \(u\in {\text {BD}}(\Omega )\) and denote its extension to \({\widetilde{\Omega }}\) via \(\widetilde{u_{0}}\) by \({\widetilde{u}}\). Then there exists \((u_{k})\subset u_{0}+{\text {C}}_{c}^{\infty }(\Omega ;{\mathbb {R}}^{n})\) such that \(\widetilde{u_{k}}\rightarrow {\widetilde{u}}\) area-strictly in \({\widetilde{\Omega }}\) as \(k\rightarrow \infty \), where \(\widetilde{u_{k}},{\widetilde{u}}\) denote the extensions of \(u_{k},u\) to \({\widetilde{\Omega }}\) by \({\widetilde{u}}\), respectively.

We turn to the actual proof, and choose \({\widetilde{\Omega }}\equiv {\text {B}}\) as above before (4.5).

Step 1. Existence of a generalised minimiser. By (1.2) we have \(m:=\inf _{u\in {\text {BD}}(\Omega )}f[{\text {E}}{\widetilde{u}}]({\text {B}})>-\infty \) and so there exists a sequence \((u_{k})\subset {\text {BD}}(\Omega )\) and \(v\in {\text {BD}}({\text {B}})\) such that \(\widetilde{u_{k}}{\mathop {\rightharpoonup }\limits ^{*}}v\) in \({\text {BD}}({\text {B}})\) as \(k\rightarrow \infty \). By Proposition 4.1(a), \(f[{\text {E}}v]({\text {B}})\le \liminf _{k\rightarrow \infty }f[{\text {E}}\widetilde{u_{k}}]({\text {B}})=m\). Since \(\widetilde{u_{k}}|_{{\text {B}}{\setminus }{\overline{\Omega }}}=v_{0}\), \(v|_{{\text {B}}{\setminus }{\overline{\Omega }}}=v_{0}\) and so we conclude from (4.5) that \(u:=v|_{\Omega }\) is a generalised minimiser in the sense of (1.7). Now, since \({\mathscr {D}}_{u_{0}}\subset {\text {BD}}(\Omega )\) and \(\overline{{\mathfrak {F}}}_{u_{0}}|_{{\mathscr {D}}_{u_{0}}}={\mathfrak {F}}|_{{\mathscr {D}}_{u_{0}}}\), we have \(\inf _{{\text {BD}}(\Omega )}\overline{{\mathfrak {F}}}_{u_{0}}\le \inf _{{\mathscr {D}}_{u_{0}}}{\mathfrak {F}}\). On the other hand, let \(u\in {\text {GM}}({\mathfrak {F}};u_{0})\) and apply the above area-strict approximation strategy to obtain a sequence \((u_{k})\subset u_{0}+{\text {C}}_{c}^{\infty }(\Omega ;{\mathbb {R}}^{n})\) such that \(\widetilde{u_{k}}\rightarrow {\widetilde{u}}\) area-strictly as \(k\rightarrow \infty \). Then we obtain by (4.1)—as the ultimate term on the right side of (4.5) is constant—

$$\begin{aligned} \overline{{\mathfrak {F}}}_{u_{0}}[u]&= f[{\text {E}}{\widetilde{u}}]({\text {B}})-\int _{{\text {B}}{\setminus }{\overline{\Omega }}}f({ \mathscr {E}}v_{0}){\text {d}}x \nonumber \\&= \lim _{k\rightarrow \infty }f[{\text {E}}\widetilde{u_{k}}]({\text {B}})- \int _{{\text {B}}{\setminus }{\overline{\Omega }}}f({\mathscr {E}}v_{0}){\text {d}}x = \lim _{k\rightarrow \infty }{\mathfrak {F}}[u_{k}] \ge \inf _{{\mathscr {D}}_{u_{0}}}{\mathfrak {F}}. \end{aligned}$$
(4.6)

Altogether, we have therefore established the absence of gaps, i.e.,

$$\begin{aligned} \min _{{\text {BD}}(\Omega )}\overline{{\mathfrak {F}}}_{u_{0}}=\inf _{ {\text {BD}}(\Omega )}\overline{{\mathfrak {F}}}_{u_{0}}=\inf _{{\mathscr {D}}_{u_{0}}}{ \mathfrak {F}}. \end{aligned}$$
(4.7)

Step 2. Proof of the claimed equivalences. Ad (a)\(\Rightarrow \)(b) and (a)\(\Rightarrow \)(c). Let \(u\in {\text {GM}}({\mathfrak {F}};u_{0})\) and choose an area-strictly approximating sequence \((u_{k})\subset u_{0}+{\text {C}}_{c}^{\infty }(\Omega ;{\mathbb {R}}^{n})\) as indicated. Then, employing formula (4.5) with \({\widetilde{\Omega }}\equiv {\text {B}}\), we obtain \(f[{\text {E}}\widetilde{u_{k}}]({\text {B}})\rightarrow f[{\text {E}}{\widetilde{u}}]({\text {B}})\) by virtue of Proposition 4.1. By constancy of the ultimate term in (4.5) and the fact that area-strict convergence implies both \({\text {L}}^{1}\)- and weak*-convergence, we conclude by means of (4.7). Ad (b)\(\Rightarrow \)(c). This follows trivially as weak*-convergence implies strong \({\text {L}}^{1}\)-convergence. Ad (c)\(\Rightarrow \)(a). Let \((u_{k})\subset {\mathscr {D}}_{u_{0}}\) be an \({\mathfrak {F}}\)-minimising sequence. By (4.3), we obtain for all \(v\in {\text {BD}}(\Omega )\)

$$\begin{aligned} \overline{{\mathfrak {F}}}_{u_{0}}[u] \le \liminf _{k\rightarrow \infty }{\mathfrak {F}}[u_{k}] = \inf _{{\mathscr {D}}_{u_{0}}}{\mathfrak {F}} {\mathop {=}\limits ^{(4.7)}} \min _{{\text {BD}}(\Omega )}\overline{{\mathfrak {F}}}_{u_{0}}. \end{aligned}$$
(4.8)

The proof is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gmeineder, F., Kristensen, J. Sobolev regularity for convex functionals on BD. Calc. Var. 58, 56 (2019). https://doi.org/10.1007/s00526-019-1491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1491-6

Mathematics Subject Classification

Navigation