Skip to main content
Log in

Liouville theorem for bounded harmonic functions on manifolds and graphs satisfying non-negative curvature dimension condition

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Brighton (in J Geom Anal 23(2):562–570, 2013) proved the Liouville theorem for bounded harmonic functions on weighted manifolds satisfying non-negative curvature dimension condition, i.e. \(\mathrm {CD}(0,\infty ).\) In this paper, we provide a new proof of this result by using the reverse Poincaré inequality. Moreover, we adopt this approach to prove the Liouville theorem for bounded harmonic functions on graphs satisfying the \(\mathrm {CD}(0,\infty )\) condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M.: The Dirichlet problem at infinity for manifolds of negative curvature. J. Differ. Geom. 18(4), 701–721 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakry, D.: Étude des transformations de Riesz dans les variétés Riemanniennes à courbure de Ricci minorée. In: Séminaire de Probabilités, XXI. Lecture Notes in Mathematics, vol. 1247, pp. 137–172. Springer, Berlin (1987)

    Google Scholar 

  3. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de Probabilités, XIX (1983/84). Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985)

    Google Scholar 

  4. Benjamini, I.: Instability of the Liouville property for quasi-isometric graphs and manifolds of polynomial volume growth. J. Theor. Probab. 4(3), 631–637 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Number 348 in Grundlehren der Mathematischen Wissenschaften. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  6. Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.T.: Li–Yau inequality on graphs. J. Differ. Geom. 99(3), 359–405 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brighton, K.: A Liouville-type theorem for smooth metric measure spaces. J. Geom. Anal. 23(2), 562–570 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28(3), 333–354 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erschler, A.: Liouville property for groups and manifolds. Invent. Math. 155(1), 55–80 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gong, C., Lin, Y.: Equivalent properties for CD inequalities on graphs with unbounded Laplacians. Chin. Ann. Math. Ser. B 38(5), 1059–1070 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grigor’yan, A.: Dimension of spaces of harmonic functions. Math. Notes 48, 1114–1118 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds (Russian). Mat. Sb. 182(1), 55–87 (1991). (English translation in Math. USSR–Sb. 72(1), 47–77, 1992)

    MATH  Google Scholar 

  13. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  14. Hua, B., Lin, Y.: Stochastic completeness for graphs with curvature dimension conditions. Adv. Math. 306, 279–302 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Horn, P., Lin, Y., Liu, S., Yau, S.T.: Volume doubling, Poincaré inequality and Guassian heat kernel estimate for nonnegative curvature graphs. arXiv:1411.5087 (2014)

  16. Huang, X.: On stochastic completeness of weighted graphs. Ph.D. thesis, Bielefeld University (2011)

  17. Kaimanovich, V.A.: Boundaries of invariant Markov operators: the identification problem. In: Pollicott, M., Schmidt, K. (eds.) Ergodic Theory of \(\mathbb{Z}^d\) Actions (Warwick, 1993–1994). London Mathematical Society. Lecture Note Series 228, pp. 127–176. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  18. Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. 666, 189–223 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Kaimanovich, V.A., Vershik, A.M.: Random walks on discrete groups: boundary and entropy. Ann. Probab. 11(3), 457–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, P.: Geometric Analysis. Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  21. Lin, Y., Liu, S.: Equivalent properties of CD inequality on graph. arXiv:1512.02677 (2015)

  22. Liu, S.P., Peyerimhoff, N.: Eigenvalue ratios of nonnegatively curved graphs. arXiv:1406.6617 (2014)

  23. Li, P., Tam, L.F.: Positive harmonic functions on complete manifolds with nonnegative curvature outside a compact set. Ann. Math. (2) 125(1), 171–207 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, P., Yau, S.T.: On the parabolic kernel of the Schroedinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  25. Lin, Y., Yau, S.T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17(2), 343–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lyons, T.: Instability of the Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains. J. Differ. Geom. 26(1), 33–66 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Münch, F.: Remarks on curvature dimension conditions on graphs. Calc. Var. Partial Differ. Equ. 11(1), 11 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morgan, F.: Manifolds with density. Not. Am. Math. Soc. 52(8), 853–858 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Munteanu, O., Wang, J.: Smooth metric measure spaces with non-negative curvature. Commun. Anal. Geom. 19(3), 451–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Munteanu, O., Wang, J.: Analysis of weighted Laplacian and applications to Ricci solitons. Commun. Anal. Geom. 20(1), 55–94 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. Not. 2, 27–38 (1992)

    Article  MATH  Google Scholar 

  32. Schmuckenschläger, M.: Curvature of nonlocal Markov generators. In: Convex Geometric Analysis (Berkeley, CA, 1996). Mathematical Sciences Research Institute Publications, vol. 34, pp. 189–197. Cambridge University Press, Cambridge (1999)

  33. Sullivan, D.: The Dirichlet problem at infinity for a negatively curved manifold. J. Differ. Geom. 18(4), 723–732 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, F.Y.: Liouville theorem and coupling on negatively curved manifolds. Stoch. Process. Appl. 100, 27–39 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, F.Y.: Equivalent semigroup properties for curvature-dimension condition. Bull. Sci. Math. 135(6–7), 803–815 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Woess, W.: Denumerable Markov Chains—Generating Functions, Boundary Theory, Random Walks on Trees. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2009)

    Book  MATH  Google Scholar 

  37. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83(2), 377–405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Yong Lin and Ariel Yadin for many stimulating discussions on Liouville theorems on discrete harmonic functions. The author is supported by NSFC (China), Grant Nos. 11831004, 11826031 and 11401106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobo Hua.

Additional information

Communicated by J. Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, B. Liouville theorem for bounded harmonic functions on manifolds and graphs satisfying non-negative curvature dimension condition. Calc. Var. 58, 42 (2019). https://doi.org/10.1007/s00526-019-1485-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1485-4

Mathematics Subject Classification

Navigation