Skip to main content
Log in

Entire solutions of monotone bistable reaction–diffusion systems in \(\pmb {\mathbb {R}}^N\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with entire solutions of monotone bistable reaction–diffusion systems in \(\mathbb {R}^N\). We first show that there is a new entire solution for bistable reaction–diffusion systems which behaves as three moving planar fronts as time goes to \(-\,\infty \) and as a V-shaped traveling front as time goes to \(\infty \). Then we address the speed of the interfaces corresponding to the entire solution by appealing to the super-sub solutions technique. Finally, we apply our results to two important models in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki, H., Hamel, F.: Generalized travelling waves for reaction–diffusion equations. In: Perspectives in Nonlinear Partial Differential Equations. In honor of H. Brezis. Contemporary Mathematics, vol. 446, pp. 101–123. Amer. Math. Soc. (2007)

  2. Berestycki, H., Hamel, F.: Generalized transition waves and their properties. Commun. Pure Appl. Math. 65, 592–648 (2012)

    Article  MathSciNet  Google Scholar 

  3. Berestycki, H., Hamel, F., Matano, H.: Bistable travelling waves around an obstacle. Commun. Pure Appl. Math. 62, 729–788 (2009)

    Article  Google Scholar 

  4. Cao, M.L., Sheng, W.J.: Traveling curved fronts of bistable Lotka–Volterra competition–diffusion systems in \({\mathbb{R}}^3\). Comput. Math. Appl. 71, 1270–1286 (2016)

    Article  MathSciNet  Google Scholar 

  5. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  6. Conley, C., Gardner, R.: An application of the generalized Morse index to travelling wave solutions of a competitive reaction–diffusion model. Indiana Univ. Math. J. 33, 319–343 (1984)

    Article  MathSciNet  Google Scholar 

  7. Crooks, E.C.M.: On the Volpert theory of traveling-wave solutions for parabolic systems. Nonlinear Anal. 26, 1621–1642 (1996)

    Article  MathSciNet  Google Scholar 

  8. Crooks, E.C.M., Toland, J.F.: Traveling waves for reaction–diffusion convection systems. Topol. Methods Nonlinear Anal. 11, 19–43 (1998)

    Article  MathSciNet  Google Scholar 

  9. Crooks, E.C.M.: Travelling fronts for monostable reaction–diffusion systems with gradient-dependence. Adv. Differ. Equ. 8, 279–314 (2003)

    MathSciNet  MATH  Google Scholar 

  10. del Pino, M., Kowalczyk, M., Wei, J.C.: Traveling waves with multiple and non-convex fronts for a bistable semilinear parabolic equation. Commun. Pure Appl. Math. 66, 481–547 (2013)

    Article  Google Scholar 

  11. Ding, W., Hamel, F., Zhao, X.: Transition fronts for periodic bistable reaction–diffusion equations. Calc. Var. Partial Differ. Equ. 54, 2517–2551 (2015)

    Article  MathSciNet  Google Scholar 

  12. Fang, J., Zhao, X.Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 17, 2243–2288 (2015)

    Article  MathSciNet  Google Scholar 

  13. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    Article  MathSciNet  Google Scholar 

  14. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc, Englewood Cliffs (1964)

    MATH  Google Scholar 

  15. Gardner, R.A.: Existence and stability of travelling wave solutions of competition models: a degree theoretic approach. J. Differ. Equ. 44, 343–364 (1982)

    Article  MathSciNet  Google Scholar 

  16. Gui, C.: Symmetry of traveling wave solutions to the Allen–Cahn equation in \(\mathbb{R}^2\). Arch. Ration. Mech. Anal. 203, 1037–1065 (2012)

    Article  MathSciNet  Google Scholar 

  17. Guo, J.S., Lin, Y.C.: The sign of the wave speed for the Lotka–Volterra competition–diffusion system. Commun. Pure Appl. Anal. 12, 2083–2090 (2013)

    Article  MathSciNet  Google Scholar 

  18. Hamel, F.: Bistable transition fronts in \({\mathbb{R}}^N\). Adv. Math. 289, 279–344 (2016)

    Article  MathSciNet  Google Scholar 

  19. Hamel, F., Rossi, L.: Admissible speeds of transition fronts for non-autonomous monostable equations. SIAM J. Math. Anal. 47, 3342–3392 (2015)

    Article  MathSciNet  Google Scholar 

  20. Hamel, F., Rossi, L.: Transition fronts for the Fisher-KPP equation. Trans. Am. Math. Soc. 368, 8675–8713 (2016)

    Article  MathSciNet  Google Scholar 

  21. Haragus, M., Scheel, A.: Almost planar waves in anisotropic media. Commun. Partial Differ. Equ. 31, 791–815 (2006)

    Article  MathSciNet  Google Scholar 

  22. Haragus, M., Scheel, A.: Corner defects in almost planar interface propagation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 283–329 (2006)

    Article  MathSciNet  Google Scholar 

  23. Kan-on, Y.: Parameter dependence of propagation speed of travelling waves for competition–diffusion equations. SIAM J. Math. Anal. 26, 340–363 (1995)

    Article  MathSciNet  Google Scholar 

  24. Kan-on, Y., Fang, Q.: Stability of monotone travelling waves for competition–diffusion equations. Jpn. J. Ind. Appl. Math. 13, 343–349 (1996)

    Article  MathSciNet  Google Scholar 

  25. Li, W.T., Lin, G., Ruan, S.: Existence of traveling wave solutions in delayed reaction–diffusion systems with applications to diffusion–competition systems. Nonlinearity 19, 1253–1273 (2006)

    Article  MathSciNet  Google Scholar 

  26. Li, W.T., Zhang, L., Zhang, G.B.: Invasion entire solutions in a competition system with nonlocal dispersal. Discrete Contin. Dyn. Syst 35, 1531–1560 (2015)

    Article  MathSciNet  Google Scholar 

  27. Lin, G., Li, W.T.: Bistable wavefronts in a diffusive and competitive Lotka–Volterra type system with nonlocal delays. J. Differ. Equ. 244, 487–513 (2008)

    Article  MathSciNet  Google Scholar 

  28. Liang, X., Yi, Y., Zhao, X.Q.: Spreading speeds and traveling waves for periodic evolution systems. J. Differ. Equ. 231, 57–77 (2006)

    Article  MathSciNet  Google Scholar 

  29. Mellet, A., Nolen, J., Roquejoffre, J.M., Ryzhik, L.: Stability of generalized transition fronts. Commun. Partial Differ. Equ. 34, 521–552 (2009)

    Article  MathSciNet  Google Scholar 

  30. Mischaikow, K., Hutson, V.: Travelling waves for mutualist species. SIAM J. Math. Anal. 24, 987–1008 (1993)

    Article  MathSciNet  Google Scholar 

  31. Morita, Y., Tachibana, K.: An entire solution to the Lotka–Volterra competition–diffusion equations. SIAM J. Math. Anal. 40, 2217–2240 (2009)

    Article  MathSciNet  Google Scholar 

  32. Ni, W.M., Taniguchi, M.: Traveling fronts of pyramidal shapes in competition–diffusion systems. Netw. Heterog. Media 8, 379–395 (2013)

    Article  MathSciNet  Google Scholar 

  33. Ninomiya, H., Taniguchi, M.: Existence and global stability of traveling curved fronts in the Allen–Cahn equations. J. Differ. Equ. 213, 204–233 (2005)

    Article  MathSciNet  Google Scholar 

  34. Nolen, J., Ryzhik, L.: Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 1021–1047 (2009)

    Article  MathSciNet  Google Scholar 

  35. Ogiwara, T., Matano, H.: Monotonicity and convergence results in order-preserving systems in the presence of symmetry. Discrete Contin. Dyn. Syst. 5, 1–34 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Shen, W., Shen, Z.W.: Stability, uniqueness and recurrence of generalized traveling waves in time heterogeneous media of ignition type. Trans. Am. Math. Soc. 369, 2573–2613 (2016)

    Article  MathSciNet  Google Scholar 

  37. Sheng, W.J., Guo, H.J.: Transition fronts of time periodic bistable reaction–diffusion equations in \({\mathbb{R}}^N\). J. Differ. Equ. 265, 2191–2242 (2018)

    Article  Google Scholar 

  38. Sheng, W.J.: Transition fronts of reaction–diffusion systems in heterogeneous media in \({\mathbb{R}}^N\). preprint

  39. Sneyd, J., Dale, P.D., Duffy, A.: Traveling waves in buffered systems: applications to calcium waves. SIAM J. Appl. Math. 58, 1178–1192 (1998)

    Article  MathSciNet  Google Scholar 

  40. Taniguchi, M.: Convex compact sets in \({\mathbb{R}}^{N-1}\) give traveling fronts of cooperation–diffusion systems in \({\mathbb{R}}^N\). J. Differ. Equ. 260, 4301–4338 (2016)

    Article  Google Scholar 

  41. Tsai, J.C.: Global exponential stability of traveling waves in monotone bistable systems. Discrete Contin. Dyn. Syst. 21, 601–623 (2008)

    Article  MathSciNet  Google Scholar 

  42. Tsai, J.C., Sneyd, J.: Existence and stability of traveling waves in buffered systems. SIAM J. Appl. Math. 66, 237–265 (2005)

    Article  MathSciNet  Google Scholar 

  43. Tsai, J.C., Sneyd, J.: Are buffers boring? Uniqueness and asymptotical stability of traveling wave fronts in the buffered bistable system. J. Math. Biol. 54, 513–553 (2007)

    Article  MathSciNet  Google Scholar 

  44. Volpert, A.I., Volpert, V.A.: Application of the rotation theory of vector fields to the study of wave solutions of parabolic equations. Transl. Trans. Moscow math. Sot. 52, 59–108 (1990)

    Google Scholar 

  45. Volpert, A.I., Volpert, V.A., Volpert, V.A.: Travelling Wave Solutions of Parabolic Systems. Translations of Mathematical Monographs, vol. 140. American Mathematical Society, Providence (1994)

    Book  Google Scholar 

  46. Wang, Z.C.: Traveling curved fronts in monotone bistable systems. Discrete Contin. Dyn. Syst. 32, 2339–2374 (2012)

    Article  MathSciNet  Google Scholar 

  47. Wang, Z.C., Niu, H.L., Ruan, S.G.: On the existence of axisymmetric traveling fronts in the Lotka–Volterra competition–diffusion systems in \({\mathbb{R}}^3\). Discrete Contin. Dyn. Syst. B 22, 1111–1144 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Wang, Z.C., Li, W.T., Ruan, S.G.: Existence, uniqueness and stability of pyramidal traveling fronts in reaction–diffusion systems. Sci. China Math. 59, 1869–1908 (2016)

    Article  MathSciNet  Google Scholar 

  49. Wang, M., Lv, G.: Entire solutions of a diffusive and competitive Lotka–Volterra type system with nonlocal delays. Nonlinearity 23, 1609–1630 (2010)

    Article  MathSciNet  Google Scholar 

  50. Wu, S.L., Wang, H.: Front-like entire solutions for monostable reaction–diffusion systems. J. Dyn. Differ. Equ. 25, 505–533 (2013)

    Article  MathSciNet  Google Scholar 

  51. Zhang, L., Li, W.T., Wu, S.L.: Multi-type entire solutions in a nonlocal dispersal epidemic model. J. Dyn. Differ. Equ. 28, 189–224 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referee and the editors for their valuable comments and suggestions that helped to improve the manuscript. The first author would like to give his sincere thanks to China Scholarship Council for a 1 year visit of Aix Marseille Université and to Professor François Hamel of Aix Marseille Université for helpful comments and suggestions. The first author’s work was partially supported by NSF of China (11401134) and by postdoctoral scientific research developmental fund of Heilongjiang Province (LBH-Q17061). The second author’s work was partially supported by NSF of China (11371179, 11731005) and the Fundamental Research Funds for the Central Universities (lzujbky-2017-ot09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jie Sheng.

Additional information

Communicated by J. Ball.

Appendix

Appendix

In this section, we give a sufficient condition to ensure that the assumption (T) holds. We further list the following assumption

(A5) :

\(\varvec{F}\) is of class \(C^{1+\beta }\) on the open domain \(\Omega \supset [\varvec{0},\varvec{1}]\), where \(\beta \in (0,1)\). The off-diagonal elements of the Jacobian matrices \(\varvec{F}'(\varvec{0})\) and \(\varvec{F}'(\varvec{1})\) are positive.

We will give exact exponential behaviors of the traveling fronts \(\varvec{\Phi }(\xi )\) of (1.1) at \(\xi =\pm \infty \) under the assumptions (A1)–(A5) and then show that (T) holds. Here we emphasize that we do not concern the existence of planar traveling fronts of (1.1) and we always assume that (1.1) admits a unique traveling front \(\varvec{\Phi }(\varvec{x}\cdot \varvec{e}-ct)=(\Phi _1(\varvec{x}\cdot \varvec{e}-ct),\ldots , \Phi _m(\varvec{x}\cdot \varvec{e}-ct))\) satisfies (1.2). Of course, as mentioned in Sect. 1, the existence of bistable planar traveling fronts of (1.1) have been widely studied, in particular, see [8, 44, 45].

To show the main results of this section, we first make some preparations. Let \(\varvec{\Phi }(\varvec{x}\cdot \varvec{e}-ct) \) be the unique traveling front of (1.1) satisfying (1.2), namely, \(\varvec{\Phi }(\varvec{x}\cdot \varvec{e}-ct)\) satisfies

$$\begin{aligned}&\varvec{D}\varvec{\Phi }''(\xi )+c\varvec{\Phi }'(\xi )+\varvec{F}(\varvec{\Phi }(\xi ))=\varvec{0},\quad \lim _{\xi \rightarrow \infty }\varvec{\Phi }(\xi )=\varvec{0},\quad \lim _{\xi \rightarrow -\infty }\varvec{\Phi }(\xi )=\varvec{1},\nonumber \\&\quad \text {and}\quad \varvec{\Phi }'(\xi )<\varvec{0}\ \text {for all }\xi \in \mathbb {R}. \end{aligned}$$
(5.1)

Let \(\varvec{w}_0\) be an equilibrium of \(\varvec{F}\), namely, \(\varvec{F}(\varvec{w}_0)=\varvec{0}\). Setting \(\varvec{Y} =\varvec{\Phi }'\) and \(\varvec{Z}=\varvec{\Phi }''\), then from (5.1) we have

$$\begin{aligned} \left( \begin{array}{c} \varvec{\Phi }\\ \varvec{Y} \\ \end{array} \right) '=\varvec{M}\left( \begin{array}{c} \varvec{\Phi }\\ \varvec{Y} \\ \end{array} \right) +\left( \begin{array}{c} \varvec{0} \\ \varvec{D}^{-1}(\varvec{F}'(\varvec{w}_0)-\varvec{F}(\varvec{\Phi })) \\ \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} \left( \begin{array}{c} \varvec{Y} \\ \varvec{Z} \\ \end{array} \right) '=\varvec{M}\left( \begin{array}{c} \varvec{Y}\\ \varvec{Z} \\ \end{array} \right) +\left( \begin{array}{c} \varvec{0} \\ \varvec{D}^{-1}(\varvec{F}'(\varvec{w}_0)-\varvec{F}'(\varvec{\Phi }))\varvec{Y} \\ \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} \varvec{M}=\left( \begin{array}{cc} \varvec{0} &{} \varvec{I} \\ -\varvec{D}^{-1}\varvec{F}'(\varvec{w}_0) &{} -c \varvec{D}^{-1} \\ \end{array} \right) . \end{aligned}$$

Consider the equation

$$\begin{aligned} (\lambda ^2\varvec{D}+c\lambda \varvec{I}+\varvec{F}'(\varvec{w}_0))\varvec{q}=0, \end{aligned}$$
(5.2)

where \(\lambda \in \mathbb {C}\) and \(\varvec{q}\in \mathbb {C}^m{\setminus } \{0\}\). According to [7, 9], we call these \(\lambda \) and \(\varvec{q}\) satisfying (5.2) as TWP-eigenvalues and eigenvectors (eigenvalues and eigenvectors of the traveling wave problem) at \(\varvec{w}_0\). A TWP-eigenvalue \(\lambda \) with eigenvector \(\varvec{q}\), is said to be stable (unstable) monotone if \(\lambda \in \mathbb {R}\) is negative (positive) and all the components of \(\varvec{q}\) are non-zero of the same sign. An equilibrium \( \varvec{w}_0\) is called to be stable if all the eigenvalues of \(\varvec{F}'(\varvec{w}_0)\) are in the open left-half complex plane and unstable if there is an eigenvalue in the open right-half plane. Now we list four lemmas. The first two lemmas are borrowed from [9] and the last two come from [45].

Lemma 5.1

[9, Theorem A.1]

(i) :

If \(\varvec{w}_0\) is a stable equilibrium, then for every \(c\in \mathbb {R}\), there is exactly one stable monotone and one unstable monotone TWP-eigenvalue at \((\varvec{w}_0; \varvec{0})\), say \(\lambda ^-(c)<0<\lambda ^+(c)\).

(ii) :

If \(\varvec{w}_0\) is an unstable equilibrium, then there exist \({\tilde{c}}_0 < c_0\in \mathbb {R}\) such that for \(c < c_0\) \((c > {\tilde{c}}_0)\), there are no stable (unstable) monotone TWP-eigenvalues at \((\varvec{w}_0, \varvec{0})\), when \(c = c_0\) \((c = {\tilde{c}}_0)\), there is exactly one stable (unstable) monotone TWP-eigenvalue, and for \(c > c_0\) \((c < {\tilde{c}}_0)\), there are precisely two stable (unstable) monotone TWP-eigenvalues, \(\lambda ^-(c)<\lambda ^+(c)<0\) \((0< \lambda ^-(c)<\lambda ^+(c))\).

Lemma 5.2

[9, Theorem A.2] Suppose that \(\varvec{w}_0\) is either a stable equilibrium or that \(\varvec{w}_0\) is unstable and \(c > c_0\) (so there are two monotone eigenvalues at \((\varvec{w}_0,\varvec{0})\), \(\lambda ^-(c)<\lambda ^+(c)\)). Then

(i) :

for \(\lambda \in \mathbb {R}\), \(\mu _{PF} (\lambda ^2\varvec{D}+c\lambda \varvec{I}+\varvec{F}'(\varvec{w}_0)) < 0\) (namely, the real, simple Perron–Frobenius eigenvalue of \(\lambda ^2\varvec{D}+c\lambda \varvec{I}+\varvec{F}'(\varvec{w}_0)\) is negative)\(\iff \) \(\lambda ^-(c)<\lambda <\lambda ^+(c)\);

(ii) :

if \(\lambda \) is a TWP-eigenvalue with \(\lambda ^-(c)\le \text {Real}\ \lambda \le \lambda ^+(c)\), then \(\lambda \in \{\lambda ^-(c),\lambda ^+(c)\}\);

(iii) :

\(\lambda ^-(c)\) and \(\lambda ^+(c)\) are simple TWP-eigenvalues, namely, \(\lambda ^-(c)\) and \(\lambda ^+(c)\) are all simple eigenvalue of \(\varvec{M}\);

(iv) :

when \(\varvec{w}_0\) is stable \(( \lambda ^-(c)<0<\lambda ^+(c))\), \(\lambda ^-(c)\) and \(\lambda ^+(c)\) are both decreasing functions of c; when \(\varvec{w}_0\) is unstable and \(c > c_0\) \(( \lambda ^-(c)<\lambda ^+(c)<0)\), \(\lambda ^-(c)\) and \(\lambda ^+(c)\) are decreasing and increasing functions of c, respectively.

Lemma 5.3

[45, Page 163, Lemma 2.4] Let \(\varvec{F}(\varvec{w}_0) = \varvec{0}\) and the off-diagonal elements of \(\varvec{F}'(\varvec{w}_0)\) are positive. If there exists a solution \(\varvec{\Phi }(\xi )\) of system (1.2) tending towards \(\varvec{w}_0\) as \(\xi \rightarrow \infty \) \((\xi \rightarrow -\infty )\) and such that \(\varvec{\Phi }(\xi ) > \varvec{w}_0\) for all sufficiently large \(\xi \) \((-\xi )\), then there exist a number \(\lambda \le 0\) \((\lambda \ge 0)\) and a positive vector \(\varvec{q}\), such that (5.2) holds. Furthermore, if the maximum eigenvalue of the matrix \(\varvec{F}'(\varvec{w}_0)\) is not equal to 0, then, obviously, \(\lambda \ne 0\).

Lemma 5.4

([45, Page 239, Lemma 4.1]) Assume that a real matrix T has nonnegative off-diagonal elements and a negative principal (i.e., with the maximal real part) eigenvalue. Suppose, further, that S is a complex diagonal matrix whose elements have nonpositive real parts. Then all the eigenvalues of the matrix \(T + S\) have negative real parts.

Following Lemmas 5.1 and 5.2, we know that there exist a unique stable monotone TWP-eigenvalue at the equilibrium \(\varvec{0}\) and a unique unstable monotone TWP-eigenvalue at the equilibrium \(\varvec{1}\). Denote them by \(\lambda _0\) and \(\mu _1\), respectively. Clearly, \(\lambda _0<0\) and \(\mu _1>0\). Now we are in the position to present the main result of this section, which is concerned with the explicit exponential behaviors of \(\varvec{\Phi }\), \(\varvec{\Phi }'\) and \(\varvec{\Phi }''\) at \(\pm \infty \). The main proofs are very similar to those of Crooks [9, Lemma 3.2].

Theorem 5.5

Suppose that (A1)–(A5) hold. Let \(\varvec{\Phi }(\xi )\) be such that (5.1). Let \(\lambda _0<0\) and \(\mu _1>0\) be the unique stable/unstable monotone TWP-eigenvalue at \(\varvec{0}\) and \(\varvec{1}\), respectively. Then there are two vectors \(\varvec{\alpha }^-\gg \varvec{0}\) and \(\varvec{\alpha }^+\gg \varvec{0}\) such that

$$\begin{aligned}&e^{-\lambda _0 \xi }\varvec{\Phi }(\xi )\rightarrow \varvec{\alpha }^+ \quad \text {as } \xi \rightarrow \infty , \end{aligned}$$
(5.3)
$$\begin{aligned}&e^{-\mu _1 \xi }(\varvec{1}-\varvec{\Phi }(\xi ))\rightarrow \varvec{\alpha }^- \quad \text {as } \xi \rightarrow -\infty , \end{aligned}$$
(5.4)
$$\begin{aligned}&e^{-\lambda _0 \xi }\varvec{\Phi }'(\xi )\rightarrow \lambda _0\varvec{\alpha }^+ \quad \text {as }\xi \rightarrow \infty , \end{aligned}$$
(5.5)
$$\begin{aligned}&e^{-\mu _1 \xi }\varvec{\Phi }'(\xi )\rightarrow -\mu _1\varvec{\alpha }^- \quad \text {as } \xi \rightarrow -\infty , \end{aligned}$$
(5.6)
$$\begin{aligned}&e^{-\lambda _0 \xi }\varvec{\Phi }''(\xi )\rightarrow \lambda _0^2\varvec{\alpha }^+ \quad \text {as }\xi \rightarrow \infty , \end{aligned}$$
(5.7)
$$\begin{aligned}&e^{-\mu _1 \xi }\varvec{\Phi }''(\xi )\rightarrow -\mu _1^2\varvec{\alpha }^- \quad \text {as } \xi \rightarrow -\infty . \end{aligned}$$
(5.8)

Proof

It suffices to show (5.3), (5.5) and (5.7), since (5.4), (5.6) and (5.8) can be proved in a similar way.

We first claim that there are no TWP-eigenvalues at \( \varvec{0}\) with zero real part. By the assumptions (A2) and (A5) and the Perron–Frobenius theorem, the principle eigenvalue of \(\varvec{F}'(\varvec{0})\) is a negative real number. Therefore, 0 can not be a TWP-eigenvalues at \( \varvec{0}\). Thus, we suppose on the contrary that \(\lambda =i\mu \) is a TWP-eigenvalues at \(\varvec{0}\), where \(\mu \in \mathbb {R}\backslash \{0\}\). It is clear that the matrix \( -\mu ^2\varvec{D}+\varvec{F}'(\varvec{0})\) has positive off-diagonal elements and a negative principal eigenvalue. By Lemma 5.4, one gets that all the eigenvalues of the matrix \( -\mu ^2\varvec{D}+\varvec{F}'(\varvec{0})+ic\mu \varvec{I}\) have negative real parts. Clearly, this contradicts the fact that 0 is an eigenvalue of the matrix \( -\mu ^2\varvec{D}+\varvec{F}'(\varvec{0})+ic\mu \varvec{I}\).

Following such a claim and the proof of [5, Page 330, Theorem 4.1], we have that \(\varvec{\Phi }(\xi )\) and \(\varvec{\Phi }'(\xi )\) tend to \(\varvec{0}\) exponentially as \(\xi \) goes to the positive infinity. As a result of [5, Page 338, Theorem 4.5] we have

$$\begin{aligned} \varvec{\Phi }(\xi )=\sum _{i=1}^k Q_i(\xi )e^{\lambda _i\xi }+O(e^{(b-\delta )\xi }),\quad \xi >0 \end{aligned}$$
(5.9)

where \(\delta > 0\), \(k\in \mathbb N\), \(Q_i(\xi ) \in \mathbb C^N \backslash \{\varvec{0}\}\) are polynomials in \(\xi \), and \(\lambda _i\) are TWP-eigenvalues at \( \varvec{0} \) with \(\text {Real}\ \lambda _k =\text {Real}\ \lambda _{k-1} = \cdots = \text {Real}\ \lambda _1 = b <0\). Moreover, by the fact that \(\varvec{\Phi }(\xi )> \varvec{0}\) and \(\varvec{\Phi }(\xi )\rightarrow \varvec{0}\) as \(\xi \rightarrow \infty \) and the proof of Lemma 5.3 we can conclude that the right-hand side of (5.9) is dominated by a term of the form \(\xi ^{j-1}e^{\hat{\lambda }\xi }\varvec{\alpha }^+\) for large \(\xi \), where \(\mathbb {R}\ni \hat{\lambda }= b < 0\) is a TWP-eigenvalue at \(\varvec{0}\) with TWP-eigenvector \(\varvec{\alpha }^+ \ (\in \mathbb {R}^m) \gg \varvec{0}\) and \(j\in \mathbb N\) is the algebraic multiplicity of \(\hat{\lambda }\) as an eigenvalue of the \(2m \times 2m\) stability matrix \(\varvec{M}\) at \(\varvec{0}\). Therefore, \(\hat{\lambda }\) is a stable monotone TWP-eigenvalue, and whence \(\hat{\lambda }=\lambda _0\) from Lemma 5.1. Furthermore, we obtain from Lemma 5.2 that \(m=1\) and \(k=1\). As a consequence, we arrive at

$$\begin{aligned} \varvec{\Phi }(\xi )=e^{\lambda _0 \xi }\varvec{\alpha }^++O(e^{(\lambda _0-\delta )\xi }),\quad \xi >0. \end{aligned}$$

Thus, we have completed the proof of (5.3).

It remains to show (5.5) and (5.7). Recall that \(\varvec{D}\varvec{\Phi }''+c\varvec{\Phi }'+\varvec{F}(\varvec{\Phi })=\varvec{0}\) for any \(\xi \in \mathbb {R}\) and \(\varvec{\Phi }(\xi ), \varvec{\Phi }'(\xi )\) tend to \(\varvec{0}\) exponentially as \(\xi \rightarrow \infty \). Integrating the system \(\varvec{D}\varvec{\Phi }''+c\varvec{\Phi }'+\varvec{F}(\varvec{\Phi })=\varvec{0}\) from \(\xi \) to \(\infty \), we get

$$\begin{aligned} \varvec{\Phi }'(\xi )=\varvec{D}^{-1}\left( -c\varvec{\Phi }(\xi )+\int _\xi ^\infty \varvec{F}(\varvec{\Phi })d\xi \right) . \end{aligned}$$

It then follows from the L’Hôpital’s rule that

$$\begin{aligned} \varvec{\Phi }'(\xi )e^{-\lambda _0\xi }= & {} \varvec{D}^{-1}\left( -c\varvec{\Phi }(\xi )+\int _\xi ^\infty \varvec{F}(\varvec{\Phi }(\eta ))d\eta \right) e^{-\lambda _0\xi }\\\rightarrow & {} \varvec{D}^{-1}\left( -c\varvec{I} -\frac{\varvec{F}'(\varvec{0})}{\lambda _0}\right) \varvec{\alpha }^+\quad \text {as }\xi \rightarrow \infty . \end{aligned}$$

Since \(\lambda _0\) and \(\varvec{\alpha }^+\) satisfy \((\lambda _0^2\varvec{D}+c\lambda _0 \varvec{I}+\varvec{F}'(\varvec{0}))\varvec{\alpha }^+=\varvec{0}\), we have

$$\begin{aligned} \varvec{D}^{-1}\left( -c\varvec{I} -\frac{\varvec{F}'(\varvec{0})}{\lambda _0}\right) \varvec{\alpha }^+=\lambda _0\varvec{\alpha }^+, \end{aligned}$$

which implies that \(\lim _{\xi \rightarrow \infty }\varvec{\Phi }'(\xi )e^{-\lambda _0\xi }=\lambda _0\varvec{\alpha }^+\). Again doing the same treatment to the system \(\varvec{D}\varvec{\Phi }''+c\varvec{\Phi }'+\varvec{F}(\varvec{\Phi })=\varvec{0}\), we get \(\lim _{\xi \rightarrow \infty }\varvec{\Phi }''(\xi )e^{-\lambda _0\xi }=\lambda _0^2\varvec{\alpha }^+\). This completes the proof. \(\square \)

A direct consequence of Theorem 5.5 is the following corollary.

Corollary 5.6

Suppose that (A1)–(A5) hold. Let \(\varvec{\Phi }(\xi )\) satisfy (1.2). Then the assumption (T) holds.

Now we prove Lemma 4.2.

Proof of Lemma 4.2

Define

$$\begin{aligned} f_1(u,v):=f(u)+k_1b_1v-k_2u(b_0-b_1v)\quad \text {and}\quad f_2(u,v):=-k_1 v+\frac{k_2}{b_1}u(b_0-b_1v). \end{aligned}$$

It is easy to check that \(\frac{\partial f_1}{\partial v}=k_1b_1+k_2b_1u>0\) and \(\frac{\partial f_2}{\partial u}=\frac{k_2}{b_1}(b_0-b_1v)\ge \frac{k_2}{b_1}(b_0-b_1)>0\) for \(u,v\in [0,1]\) due to \(b_1=k_2b_0/(k_1+k_2)\) and \(k_1\), \(k_2\), \(b_0\) and \(b_1\) are positive constants, which implies that system (4.6) satisfies (A4) and (A5). It is also easy to verify that system (4.6) satisfies (A1)–(A3). It then can be inferred from Theorem 5.5 that Lemma 4.2 holds for \(\lambda <0\) is the unique stable monotone TWP-eigenvalue at (0, 0) and \(\mu >0\) is the unique unstable monotone TWP-eigenvalue at (1, 1), and \((\beta _1,\beta _2)\) and \((\alpha _1,\alpha _2)\) are the TWP-eigenvectors associated with \(\lambda \) and \(\mu \), respectively. This completes the proof of Lemma 4.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, WJ., Wang, ZC. Entire solutions of monotone bistable reaction–diffusion systems in \(\pmb {\mathbb {R}}^N\). Calc. Var. 57, 145 (2018). https://doi.org/10.1007/s00526-018-1437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1437-4

Mathematics Subject Classification

Navigation