Skip to main content
Log in

Large time behavior and convergence for the Camassa–Holm equations with fractional Laplacian viscosity

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the n-dimensional (\(n=2,3\)) Camassa–Holm equations with fractional Laplacian viscosity in the whole space. In contrast to the Camassa–Holm equations without any nonlocal effect, much less has been known on the large time behavior and convergences of solutions. Here we study first the large time behavior of solutions, then consider the relation between the equations under consideration and the imcompressible Navier–Stokes equations with fractional Laplacian viscosity (INSF). By applying the fractional Leibniz chain rule and the fractional Gagliardo–Nirenberg–Sobolev type estimates, the high and low frequency splitting method and the Fourier splitting method, we shall establish the large time non-uniform decays and algebraic rate decays of solutions. In the critical case \(s=\dfrac{n}{4}\), the nonlocal version of Ladyzhenskaya’s inequality along with the smallness of initial data in suitable Sobolev spaces is needed. In addition, by estimates for the fractional heat kernels, we prove that the solutions to the Camassa–Holm equations with nonlocal viscosity converge strongly as the filter parameter \(\alpha \rightarrow ~0\) to solutions of the equations INSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelouhab, L., Nona, J.L., Felland, M., Saut, J.C.: Nonlocal models for nonlinear dispersive waves. Phys. D 40, 360–392 (1989)

    Article  MathSciNet  Google Scholar 

  2. Bjorland, C.: Decay asymptotics of the viscous Camassa–Holm equations in the plane. SIAM J. Math. Anal. 2(40), 516–539 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bjorland, C., Schonbek, M.E.: On questions of decay and existence for the viscous Camassa–Holm equations. Ann. I. H. Poincaré 25, 907–936 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bobaru, F., Duanpany, M.: The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Conduct 53, 4047–4059 (2010)

    Article  Google Scholar 

  5. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional laplacian. Commun. Partial Differ. Eqs. 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  6. Carpio, A.: Asymptotic behavior for the vorticity equations in dimensions two and three. Commun. Partial Differ. Eqs. 19, 827–872 (1994)

    Article  MathSciNet  Google Scholar 

  7. Chen, W., Holm, S.: Fractional laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115, 1424–1430 (2004)

    Article  Google Scholar 

  8. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phes. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  9. Chen, W.: A speculative study of \(2/3\)-order fractional Laplacian modeling of turbulence: some thoughts and conjectures. Chaos 16, 023126 (2006)

    Article  Google Scholar 

  10. Chen, W., Holm, S.: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115, 1424–1430 (2004)

    Article  Google Scholar 

  11. Constantin, P., Ignatova, M.: Remarks on the fractional Laplacian with Dirichlet boundary conditions and applications. Int. Math. Res. Not. IMRN 6, 1653–1673 (2017)

    MathSciNet  Google Scholar 

  12. D’Elia, M., Gunzaburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66, 1245–1260 (2013)

    Article  MathSciNet  Google Scholar 

  13. Dong, H.J., Li, D.: Optimal local smoothing and analyticity rate estimates for the generalized Navier–Stokes equations. Commun. Math. Sci. 7(1), 67–80 (2009)

    Article  MathSciNet  Google Scholar 

  14. Elgart, A., Schlein, B.: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60, 500–545 (2007)

    Article  MathSciNet  Google Scholar 

  15. Fröhlich, J., Lenzmann, E.: Blowup for nonlinear wave equations describing boson stars. Commun. Pure Appl. Math. 60, 1691–1705 (2007)

    Article  MathSciNet  Google Scholar 

  16. Foias, C., Holm, D.D., Titi, E.S.: The Navier–Stokes-alpha model of fluid turbulence. Phys. D. 152/153, 505–519 (2001)

    Article  MathSciNet  Google Scholar 

  17. Foias, C., Holm, D.D., Titi, E.S.: The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory. J. Dyn. Differ. Eqs. 14(1), 1–35 (2002)

    Article  MathSciNet  Google Scholar 

  18. Fujiwara, K., Georgiev, V., Ozawa, T.: Higher order fractional Leibniz rule, arXiv:1609.05739 (2016)

  19. Gallay, T., Wayne, C.E.: Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on \({\mathbb{R}}^{2}\). Arch. Ration. Mech. Anal. 163, 209–258 (2002)

    Article  MathSciNet  Google Scholar 

  20. Gan, Z.H., Lin, F.H., Tong, J.J.: On the viscous Camassa–Holm equations with fractional diffusion, arXiv:1709.00774

  21. Gan, Z.H., He, Y., Meng, L.H., Wang, Y.: Regularity of solutions of the Camassa–Holm equations with fractional laplacian viscosity, arXiv:1805.02324

  22. Giga, Y., Kambe, T.: Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation. Commun. Math. Phys. 117, 549–568 (1988)

    Article  MathSciNet  Google Scholar 

  23. Grafakos, L., Maldonado, D., Naibo, V.: A remark on an endpoint Kato-Ponce inequality. Differ. Integr. Eqs. 27, 415–424 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Grafakos, L., Si, Z.: The Hörmander multiplier theorem for multilinear operators. J. Reine Angew Math. 668, 133–147 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Gui, G.L., Liu, Y.: Global well-posedness and blow-up of solutions for the Camassa–Holm equations with fractional dissipation. Math. Z. 281, 993–1020 (2015)

    Article  MathSciNet  Google Scholar 

  26. Holm, D.D., Marsden, J.E., Ratiu, T.S.: Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

    Article  MathSciNet  Google Scholar 

  27. Kato, T.: Strong \(L^{p}\)-solutions of the Navier–Stokes equation on \({\mathbb{R}}^{m}\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  Google Scholar 

  28. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  29. Kenig, C.E., Martel, Y., Robbiano, L.: Local well-posedness and blow-up in the energy space for a class of \(L^{2}\) critical dispersion generalized Benjamin-ono equations. Ann. Inst. H. Poincaré Anal. Non Lineairé 28, 853–887 (2011)

    Article  MathSciNet  Google Scholar 

  30. Kozono, H., Ogawa, T.: Two dimensional Navier–Stokes flow in unbounded domains. Math. Ann. 297(1), 1–31 (1993)

    Article  MathSciNet  Google Scholar 

  31. Kozono, H., Ogawa, T., Sohr, H.: Asymptotic behavior in \(L^{r}\) for turbulent solutions of the Navier–Stokes equations in exterior domains. Manuscripta Math. 74(3), 253–275 (1992)

    Article  MathSciNet  Google Scholar 

  32. Ladyzhenskaya, O.A., Shkoller, S.: Mathematical problems of the dynamic of viscous incompnsaible fluid, p. 203. GIFML, Moscow (1961)

    Google Scholar 

  33. Ladyzhenskaya, O.A.: On global existence of weak solutions to some 2-dimensional initial-boundary value problems for Maxwell fluids. Appl. Anal. 65, 251–255 (1997)

    Article  MathSciNet  Google Scholar 

  34. Ladyzhenskaya, O.A., Seregin, G.A.: On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. J. Math. Fluid Mech. 1, 356–387 (1999)

    Article  MathSciNet  Google Scholar 

  35. Ladyzhenskaya, O.A.: Sixth problem of the millennium Navier–Stokes equations, existences and smoothness. Russian Math. Surveys 58(2), 251–286 (2003)

    Article  MathSciNet  Google Scholar 

  36. Landkof, N.S.: Foundations of Modern Potential, Die Grundlehren der Mathematischen Wissenschaften, 180. Springer, New York (1972)

    Google Scholar 

  37. Leray, J.: Sur le mouvement d’un liquide visqueuz emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  38. Lieb, E.H., Yau, H.T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 147–174 (1987)

    Article  MathSciNet  Google Scholar 

  39. Majda, A.J., McLaughlin, D.W., Tabak, E.G.: A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci. 7, 9–44 (1997)

    Article  MathSciNet  Google Scholar 

  40. Masuda, K.: Weak solutions of Navier–Stokes equations. Tohoku Math J. (2) 36(4), 623–646 (1984)

    Article  MathSciNet  Google Scholar 

  41. Mongiovi, M.S., Zingales, M.: A non-local model of thermal energy transport: the fractional temperature equation. Int. J. Heat Mass Transf. 67, 593–601 (2013)

    Article  Google Scholar 

  42. Nezza, E.D., Palarucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  43. Ogawa, T., Rajopadhye, S.V., Schonbek, M.E.: Energy decay for a weak solution of the Navier–Stokes equation with slowly varying external forces. J. Funct. Anal. 144(2), 325–358 (1997)

    Article  MathSciNet  Google Scholar 

  44. Pang, G.F., Chen, W., Fu, Z.J.: Space-fractional advection-dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)

    Article  MathSciNet  Google Scholar 

  45. Schonbek, M.E.: Sharp rate of decay of solutions to 2-dimensional Navier–Stokes equations. Commun. Partial Differ. Eqs. 7(1), 449–473 (1980)

    Article  MathSciNet  Google Scholar 

  46. Schonbek, M.E.: \(L^{2}\) decay for weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 88(31), 209–222 (1985)

    Article  Google Scholar 

  47. Schonbek, M.E.: Large time behavior of solutions to the Navier–Stokes equations. Commun. Partial Differ. Eqs. 11(7), 733–763 (1986)

    Article  Google Scholar 

  48. Schonbek, M.E.: Large time behavior of solutions to the Navier–Stokes equations in \(H^{m}\) spaces. Commun. Partial Differ. Eqs. 20(1–2), 103–117 (1995)

    Article  Google Scholar 

  49. Tarasov, V.E.: Electromagnetic fields on fractals. Mod. Phys. Lett. A 21, 1587–1600 (2006)

    Article  Google Scholar 

  50. Weinstein, M.I.: Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Commun. Partial Differ. Eqs. 12, 1133–1173 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Dong Li and Dr. Yuan Cai for their helpful comments. Zaihui Gan is partially supported by the National Natural Science Foundation of China ( No. 11571254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaihui Gan.

Additional information

Communicated by F. H. Lin.

Appendices

Appendix A

We are now in the position to show (3.18). Note that \(\mathbf {v}^{\varepsilon }\) is a solution of (1.1)–(1.2), multiplying the first equation for \(\mathbf {v}^{\varepsilon }\) in (1.1) by \(\Delta \mathbf {v}^{\varepsilon }\), then integrating by parts yields

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\left\| \nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\nu \left\| \Lambda ^{\beta }\nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}=\left\langle \mathbf {u}^{\varepsilon }\cdot \nabla \mathbf {v}^{\varepsilon }, \Delta \mathbf {v}^{\varepsilon }\right\rangle +\left\langle \mathbf {v}^{\varepsilon }\cdot \nabla \mathbf {u}^{\varepsilon T}, \Delta \mathbf {v}^{\varepsilon }\right\rangle . \end{aligned}$$
(A.1)

We then deal with the two terms on the right hand side of (A.1) through two cases:

Case (I) \(\dfrac{n}{4}< \beta < 1\) for \(n=2,3\);

Case (II) \( \beta =\dfrac{n}{4}\) for \(n=2,3\).

We first consider Case (I)   \(\dfrac{n}{4}< \beta < 1\) for \(n=2,3\).

In this case, notice that \(\left\langle \mathbf {u}^{\varepsilon }\cdot \nabla \mathbf {v}^{\varepsilon }, \mathbf {v}^{\varepsilon }\right\rangle =0\),    \(\displaystyle \frac{\beta }{n}=\frac{1}{2}-\frac{n/2-\beta }{n}\),  \(\displaystyle \frac{n}{2}-1<\frac{n}{2}-\beta <\frac{n}{4}\)\(\displaystyle \frac{n}{2}-1<\frac{n}{2}-2\beta +1<1\), Hölder’s inequality, Sobolev inequality and Cauchy-Schwartz inequality yield that

$$\begin{aligned} \displaystyle \left| \left\langle \mathbf {u}^{\varepsilon }\cdot \nabla \mathbf {v}^{\varepsilon }, \Delta \mathbf {v}^{\varepsilon }\right\rangle \right|= & {} \left| \left\langle \nabla \mathbf {u}^{\varepsilon } \cdot \nabla \mathbf {v}^{\varepsilon }, \nabla \mathbf {v}^{\varepsilon } \right\rangle \right| \nonumber \\\le & {} C\left\| \nabla \mathbf { v}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \nabla \mathbf {u}^{\varepsilon }\nabla v^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C\left\| \nabla \mathbf {v}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \nabla \mathbf {v}^{\varepsilon } \right\| _{L^{\frac{2n}{n-2\beta }}(\mathbb {R}^{n})} \left\| \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{\frac{n}{\beta }}(\mathbb {R}^{n})}\nonumber \\\le & {} C\left\| \nabla \mathbf {v}^{\varepsilon }\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla \mathbf {v}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{\frac{n}{2}-\beta } \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C\left\| \nabla \mathbf {v}^{\varepsilon }\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla \mathbf {v}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \nabla \mathbf {u}^{\varepsilon } \right\| ^{1+\beta -\frac{n}{2}} _{L^{2}(\mathbb {R}^{n})} \left\| \Delta \mathbf {u}^{\varepsilon } \right\| ^{\frac{n}{2}-\beta }_{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C\left\| \nabla \mathbf {v}^{\varepsilon }\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla \mathbf {v}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}\left\| \mathbf {v}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} \frac{\nu }{4}\left\| \Lambda ^{\beta } \nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+C\left\| \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\left\| \nabla \mathbf {v}^{\varepsilon }\right\| ^{2}_{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(A.2)

On the other hand, Lemmas 2.8 and 2.11 ensure that

$$\begin{aligned}&\left| \left\langle \mathbf {v}^{\varepsilon }\cdot \nabla \mathbf {u}^{\varepsilon T}, \Delta \mathbf {v}^{\varepsilon }\right\rangle \right| \nonumber \\&\qquad \le \left| \left\langle \Lambda ^{1-\beta } \left( \mathbf {v}^{\varepsilon }\cdot \nabla \mathbf {u}^{\varepsilon T}\right) , \Lambda ^{\beta }\nabla \mathbf {v}^{\varepsilon }\right\rangle \right| \nonumber \\&\qquad \le \left\| \Lambda ^{1-\beta } \left( \mathbf {v}^{\varepsilon }\cdot \nabla \mathbf {u}^{\varepsilon T}\right) \right\| _{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{\beta }\nabla \mathbf {v}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad \displaystyle \le C\left( \left\| \Lambda ^{1-\beta } \mathbf {v}^{\varepsilon }\right\| _{L^{ \frac{2n}{n-4\beta +2} }(\mathbb {R}^{n})}\left\| \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{\frac{2n}{4\beta -2} }(\mathbb {R}^{n})}\right. \nonumber \\&\qquad \left. +\left\| \mathbf {v}^{\varepsilon } \right\| _{L^{ \frac{2n}{n-2\beta } }(\mathbb {R}^{n})}\left\| \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{ \frac{n}{\beta } }(\mathbb {R}^{n})}\right) \cdot \left\| \Lambda ^{\beta }\nabla \mathbf {v}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad \le \displaystyle \frac{\nu }{4}\left\| \Lambda ^{\beta } \nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+C\left\| \Lambda ^{\beta }\mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{ \frac{n}{2}-2\beta +1}\nabla \mathbf {u}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad \le \displaystyle \frac{\nu }{4}\left\| \Lambda ^{\beta } \nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+C\left\| \Lambda ^{\beta }\mathbf {v}^{\varepsilon }\right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\Vert \mathbf {v}^{\varepsilon } \Vert ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad \le \displaystyle \frac{\nu }{4}\left\| \Lambda ^{\beta } \nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+C\left( \left\| \mathbf {v}^{\varepsilon }\right\| _{L^{2}(\mathbb {R}^{n})}+\left\| \nabla \mathbf {v}^{\varepsilon }\right\| _{L^{2}(\mathbb {R}^{n})}\right) ^{2}\Vert \mathbf {v}^{\varepsilon } \Vert ^{2}_{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(A.3)

Combining (A.1) with (A.2) and (A.3) gives rise to

$$\begin{aligned} \frac{d}{dt}\left\| \nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\frac{\nu }{2}\left\| \Lambda ^{\beta }\nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\le C\left\| \nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\left\| \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(A.4)

We next consider Case (II)   \( \beta =\dfrac{n}{4}\) for \(n=2,3\).

In this case, thanks to \(\left\langle \mathbf {u}^{\varepsilon }\cdot \nabla \mathbf {v}^{\varepsilon }, \mathbf {v}^{\varepsilon }\right\rangle =0\) and \(\frac{1}{4}=\frac{1}{2}-\frac{\beta }{n}\), note that Lemma 2.12, applying Hölder’s inequality and Gagliardo–Nirenberg–Sobolev inequality imply

$$\begin{aligned} \left| \left\langle \mathbf {u}^{\varepsilon }\cdot \nabla \mathbf {v}^{\varepsilon }, \Delta \mathbf {v}^{\varepsilon }\right\rangle \right|\le & {} \left| \left\langle \nabla \mathbf {u}^{\varepsilon }\cdot \nabla \mathbf {v}^{\varepsilon }, \nabla \mathbf {v}^{\varepsilon }\right\rangle \right| \nonumber \\\le & {} \left\| \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{4}(\mathbb {R}^{n})}\nonumber \\\le & {} C\left\| \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})} \left( \left\| \nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\left\| \Lambda ^{\frac{n}{4}}\nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\right) , \end{aligned}$$
(A.5)

and

$$\begin{aligned}&\left| \left\langle \mathbf {v}^{\varepsilon }\cdot \nabla \mathbf {u}^{\varepsilon T}, \Delta \mathbf {v}^{\varepsilon }\right\rangle \right| \nonumber \\&\quad \le \left\| \nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{4}(\mathbb {R}^{n})}\left\| \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}+\left\| \Delta \mathbf {u}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}\left\| \mathbf {v}^{\varepsilon }\nabla v^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le \left\| \nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{4}(\mathbb {R}^{n})}\left\| \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}+\left\| \Delta \mathbf {u}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}\left\| \mathbf {v}^{\varepsilon } \right\| _{L^{4}(\mathbb {R}^{n})}\left\| \nabla v^{\varepsilon } \right\| _{L^{4}(\mathbb {R}^{n})}\nonumber \\&\quad \le C\left\| \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}}\nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\left\| \Delta \mathbf {u}^{\varepsilon }\right\| _{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{\frac{n}{4}} \mathbf {v}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}} \nabla \mathbf {v}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C\left\| \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}}\nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})} +\left\| \Delta \mathbf {u}^{\varepsilon }\right\| _{L^{2}(\mathbb {R}^{n})}\left( \left\| \Lambda ^{\frac{n}{4}} \mathbf {v}^{\varepsilon } \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}+ \left\| \Lambda ^{\frac{n}{4}} \nabla \mathbf {v}^{\varepsilon } \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\right) \nonumber \\&\quad \lesssim \left( \left\| \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}+\left\| \Delta \mathbf {u}^{\varepsilon }\right\| _{L^{2}(\mathbb {R}^{n})}\right) \left\| \Lambda ^{\frac{n}{4}} \nabla \mathbf {v}^{\varepsilon } \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}+\left\| \Delta \mathbf {u}^{\varepsilon }\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}} \mathbf {v}^{\varepsilon } \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \lesssim \left( \left\| \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}+\left\| \Delta \mathbf {u}^{\varepsilon }\right\| _{L^{2}(\mathbb {R}^{n})}\right) \left\| \Lambda ^{\frac{n}{4}} \nabla \mathbf {v}^{\varepsilon } \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad +\left\| \Delta \mathbf {u}^{\varepsilon }\right\| _{L^{2}(\mathbb {R}^{n})} \left( \left\| \mathbf {v}^{\varepsilon } \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}+\left\| \nabla \mathbf {v}^{\varepsilon } \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\right) . \end{aligned}$$
(A.6)

By Proposition 2.4, the assumptions in (III) of this theorem, once we choose \(\left\| \nabla \mathbf {u}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})}+\left\| \Delta \mathbf {u}^{\varepsilon }\right\| _{L^{2}(\mathbb {R}^{n})}\lesssim \left\| \mathbf {v}^{\varepsilon } \right\| _{L^{2}(\mathbb {R}^{n})} \lesssim \Vert \mathbf {v}_{0}^{\varepsilon } \Vert _{L^{2}(\mathbb {R}^{n})}\lesssim \Vert \mathbf {v}_{0} \Vert _{L^{2}(\mathbb {R}^{n})}\le \varepsilon ^{*} \le \frac{\nu }{4}\), (A.1), (A.5) and (A.6) yield

$$\begin{aligned} \frac{d}{dt}\Vert \nabla \mathbf {v}^{\varepsilon } \Vert ^{2}_{L^{2}(\mathbb {R}^{n})}+\frac{\nu }{2}\left\| \Lambda ^{\frac{n}{4}}\nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\lesssim \Vert \mathbf {v}^{\varepsilon } \Vert _{L^{2}(\mathbb {R}^{n})}\Vert \nabla \mathbf {v}^{\varepsilon } \Vert ^{2}_{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(A.7)

Using (A.4) and (A.7), Gronwall’s lemma yields that for \(\displaystyle \frac{n}{4}\le \beta <1\) with \(n=2,3\)

$$\begin{aligned} \Vert \nabla \mathbf { v}^{\varepsilon } \Vert ^{2}_{L^{2}(\mathbb {R}^{n})}\le \Vert \nabla \mathbf {v}^{\varepsilon }_{0} \Vert ^{2}_{L^{2}(\mathbb {R}^{n})}e^{C\Vert \mathbf {v}^{\varepsilon }_{0} \Vert ^{2}_{L^{2}(\mathbb {R}^{n})}}\le C\varepsilon ^{2}. \end{aligned}$$
(A.8)

This gives

$$\begin{aligned}&\left\| \Lambda ^{\beta } \mathbf {u}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\alpha ^{2}\left\| \Lambda ^{\beta } \nabla \mathbf {u}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})} \le \left\| \nabla \mathbf {u}^{\varepsilon }\right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\alpha ^{2}\left\| \Delta \mathbf {u}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})} \nonumber \\&\le \left\| \nabla \mathbf {v}^{\varepsilon } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\le C\varepsilon ^{2}. \end{aligned}$$
(A.9)

It follows from (2.1) and (A.9) that

$$\begin{aligned} \frac{d}{dt}\left( \Vert \mathbf {u}^{\varepsilon } \Vert ^{2}_{L^{2}(\mathbb {R}^{n})}+\alpha ^{2}\Vert \nabla \mathbf {u}^{\varepsilon } \Vert ^{2}_{L^{2}(\mathbb {R}^{n})}\right) \ge -C\varepsilon ^{2}. \end{aligned}$$

This is the estimate (3.18). So far, we finish the proof of Theorem 3.1.

Appendix B

We shall prove (VI-1) of Theorem 4.1 here by using inductive argument. Due to the regularity of solutions (Proposition 2.4), we present the proof only formally. It should be pointed out that the key point of the proof is to establish an inequality in a form satisfing the conclusion in (IV) of this theorem. To achieve this, we shall divide the proof into the following three steps.

Step 1. For \(m=0,1\), the inequality holds by (III-2) and (II), respectively. That is,

$$\begin{aligned} \Vert \mathbf {v} \Vert ^{2}_{L^{2}(\mathbb {R}^{n})}\le C(1+t)^{-\frac{n}{2\beta }}, ~~\Vert \nabla \mathbf {v} \Vert ^{2}_{L^{2}(\mathbb {R}^{n})}\le C(1+t)^{-\frac{1}{\beta }-\frac{n}{2\beta }}. \end{aligned}$$

Step 2. We now assume (inductive assumption) that the decay

$$\begin{aligned} \Vert \nabla ^{m} \mathbf {v} \Vert ^{2}_{L^{2}(\mathbb {R}^{n})}\le C(1+t)^{-\frac{m}{\beta }-\frac{n}{2\beta }} \end{aligned}$$
(B.1)

holds for all \(m<M\). Here, m and M are both non-negative integers.

Step 3. We will verify that the inequality (B.1) is true for \(m=M\).

Multiplying the first equation in (1.1) by \(\Delta ^{M}\mathbf {v}\), and then integrating by parts the resulting equation gives rise to

$$\begin{aligned}&\displaystyle \frac{d}{dt}\left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+2\nu \left\| \Lambda ^{\beta }\nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le \left| \left\langle \mathbf {u} \cdot \nabla \mathbf {v}, \Delta ^{M} \mathbf {v}\right\rangle \right| + \left| \left\langle \mathbf {v} \cdot \nabla \mathbf {u}^{T}, \Delta ^{M} \mathbf {v} \right\rangle \right| \nonumber \\&\quad \triangleq ~~I_{M}+J_{M}. \end{aligned}$$
(B.2)

To bound \(I_{M}\) and \(J_{M}\), there are two cases to consider.

Case (I) \(\displaystyle \frac{n}{4}< \beta < 1\) for \(n=2,3\);

Case (II) \( \displaystyle \beta =\frac{n}{4}\) for \(n=2,3\).

We first consider Case (I) \(\displaystyle \frac{n}{4}< \beta < 1\) for \(n=2,3\).

In this case, it is easy to check that \(\displaystyle \frac{n}{2}-\beta <\beta \) and \(\frac{n}{\beta }=\frac{2n}{n-2(n/2-\beta )}\). Recall that (B.2) and \(\left\langle \mathbf {u} \cdot \nabla \mathbf {v}, \mathbf {v} \right\rangle =0\), thanks to Cauchy’s inequality, Hölder’s inequality and Gagliardo–Nirenberg–Sobolev inequality, one deduces that

$$\begin{aligned} \displaystyle I_{M}= & {} \left| \left\langle \mathbf {u} \cdot \nabla \mathbf {v}, \Delta ^{M} \mathbf {v} \right\rangle \right| \nonumber \\= & {} \left| \sum \limits ^{M}_{m=1} \left( \begin{array}{l} M\\ m \end{array}\right) \left\langle \nabla ^{m}\mathbf {u}\cdot \nabla \nabla ^{M-m}\mathbf {v}, \nabla ^{M} \mathbf {v} \right\rangle \right| \nonumber \\\le & {} C\sum \limits ^{M}_{m=1} \left\| \nabla ^{M+1-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\left\| \nabla ^{m}\mathbf {u}\cdot \nabla ^{M }\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C\sum \limits ^{M}_{m=1} \left\| \nabla ^{M+1-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \nabla ^{m}\mathbf {u} \right\| _{L^{\frac{n}{\beta }}(\mathbb {R}^{n})} \left\| \nabla ^{M}\mathbf {v} \right\| _{L^{\frac{2n}{n-2\beta }}(\mathbb {R}^{n})}\nonumber \\\le & {} C\sum \limits ^{M}_{m=1} \left\| \nabla ^{M+1-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla ^{m}\mathbf {u} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla ^{M}\mathbf {v } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C\sum \limits ^{M}_{m=1} \left\| \nabla ^{M+1-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{2}-\beta }\nabla ^{m}\mathbf {u} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla ^{M}\mathbf {v } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C\sum \limits ^{M}_{m=1} \left\| \nabla ^{M+1-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla ^{m-1}\mathbf {u} \right\| ^{2\beta -\frac{n}{2}} _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla ^{m}\mathbf {u} \right\| ^{ \frac{n}{2}+1-2\beta } _{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{\beta }\nabla ^{M}\mathbf {v } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C\sum \limits ^{M}_{m=1} \left\| \nabla ^{M+1-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla ^{m-1}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla ^{M}\mathbf {v } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C\sum \limits ^{M}_{m=1} \left\| \nabla ^{M+1-m}\mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla ^{m-1}\mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})} +\frac{\nu }{2}\left\| \Lambda ^{\beta }\nabla ^{M}\mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}, \end{aligned}$$
(B.3)

and

$$\begin{aligned} J_{M}= & {} \left| \left\langle \mathbf {v} \cdot \nabla \mathbf {u}^{T}, \Delta ^{M} \mathbf {v} \right\rangle \right| \nonumber \\= & {} \sum \limits ^{M}_{m=0} \left( \begin{array}{l} M\\ m \end{array}\right) \left| \left\langle \nabla ^{M}\mathbf {v}\cdot \nabla \nabla ^{m}\mathbf {u}, \nabla ^{M-m} \mathbf {v} \right\rangle \right| \nonumber \\\le & {} C \left| \left\langle \nabla ^{M}\mathbf {v}\cdot \nabla \mathbf {u}, \nabla ^{M } \mathbf {v} \right\rangle \right| +C\sum \limits ^{M}_{m=1}\left| \left\langle \nabla ^{M}\mathbf {v}\cdot \nabla ^{m+1} \mathbf {u}, \nabla ^{M -m} \mathbf {v} \right\rangle \right| . \end{aligned}$$
(B.4)

By Lemma 2.12, a similar computation to (B.3) shows that

$$\begin{aligned}&\left| \left\langle \nabla ^{M}\mathbf {v}\cdot \nabla \mathbf {u}, \nabla ^{M } \mathbf {v} \right\rangle \right| \nonumber \\&\quad \le \left\| \nabla ^{M}\mathbf {v} \right\| ^{2} _{L^{4}(\mathbb {R}^{n})}\left\| \nabla \mathbf {u} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le \left( \left\| \nabla ^{M}\mathbf {v} \right\| ^{1-\frac{n}{4\beta }} _{L^{2}(\mathbb {R}^{n})}\left\| \nabla ^{M}\mathbf {v} \right\| ^{\frac{n}{4\beta }} _{L^{2}(\mathbb {R}^{n})}\right) \left\| \nabla \mathbf {u} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le \left( C(\varepsilon )\left\| \nabla ^{M}\mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}+\varepsilon \left\| \Lambda ^{\beta } \nabla ^{M}\mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\right) \left\| \nabla \mathbf {u} \right\| _{L^{2}(\mathbb {R}^{n})}, \end{aligned}$$
(B.5)

and

$$\begin{aligned}&\sum \limits ^{M}_{m=1}\left| \left\langle \nabla ^{M}\mathbf {v}\cdot \nabla ^{m+1} \mathbf {u}, \nabla ^{M -m} \mathbf {v} \right\rangle \right| \nonumber \\&\quad \le \sum \limits ^{M}_{m=1}\left\| \nabla ^{M-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \nabla ^{m+1}\mathbf {u}\cdot \nabla ^{M}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le \sum \limits ^{M}_{m=1}\left\| \nabla ^{M-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \nabla ^{m+1}\mathbf {u} \right\| _{L^{\frac{n}{\beta }}(\mathbb {R}^{n})}\left\| \nabla ^{M}\mathbf {v} \right\| _{L^{\frac{2n}{n-2\beta }}(\mathbb {R}^{n})}\nonumber \\&\quad \qquad \le \sum \limits ^{M}_{m=1}\left\| \nabla ^{M-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{2}-\beta }\nabla ^{m+1}\mathbf {u} \right\| _{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{\beta } \nabla ^{M}\mathbf {v } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le \sum \limits ^{M}_{m=1}\left\| \nabla ^{M-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla ^{m-1}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{\beta } \nabla ^{M}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C\sum \limits ^{M}_{m=1}\left\| \nabla ^{M-m}\mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\beta }\nabla ^{m-1}\mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}+\frac{\nu }{4}\left\| \Lambda ^{\beta } \nabla ^{M}\mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(B.6)

We have used the relation \(\mathbf {u}-\alpha ^{2}\Delta \mathbf {u}=\mathbf {v}\) in the estimates (B.3) and (B.6). Choosing \(\varepsilon \le \dfrac{\nu }{4\Vert \nabla \mathbf {u}_{0} \Vert _{L^{2}(\mathbb {R}^{n})}}\), if follows from (B.2), (B.3), (B.4), (B.5) and (B.6) that

$$\begin{aligned}&\frac{d}{dt}\left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+ \nu \left\| \Lambda ^{\beta }\nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C\left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{\beta }\mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+C(\varepsilon )\left\| \nabla ^{M} \mathbf {v } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\left\| \nabla \mathbf {u} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad +\left\| \nabla ^{M-1} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{\beta }\mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad +C \sum \limits ^{M}_{m=2}\left\| \nabla ^{M-m} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{\beta }\nabla ^{m-1}\mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(B.7)

We next consider Case (II) \( \displaystyle \beta =\frac{n}{4}\) for \(n=2,3\).

In this case, thanks to Lemma 2.12, note that (B.2) and \(\left\langle \mathbf {u}\cdot \nabla \mathbf {v}, \mathbf {v} \right\rangle =0\), we deduce the following two estimates:

$$\begin{aligned} I_{M}= & {} \left| \left\langle \mathbf {u} \cdot \nabla \mathbf {v}, \Delta ^{M} \mathbf {v} \right\rangle \right| \nonumber \\= & {} \left| \sum \limits ^{M}_{m=1} \left( \begin{array}{l} M\\ m \end{array}\right) \left\langle \nabla ^{m}\mathbf {u}\cdot \nabla \nabla ^{M-m}\mathbf {v}, \nabla ^{M} \mathbf {v} \right\rangle \right| \nonumber \\\le & {} C\sum \limits ^{M}_{m=1} \left\| \nabla ^{M+1-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \nabla ^{m}\mathbf {u}\cdot \nabla ^{M }\mathbf {v } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C\sum \limits ^{M}_{m=1}\left\| \nabla ^{M+1-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\left\| \nabla ^{m}\mathbf {u} \right\| _{L^{4}(\mathbb {R}^{n})} \left\| \nabla ^{M}\mathbf {v} \right\| _{L^{4}(\mathbb {R}^{n})}\nonumber \\\le & {} C\sum \limits ^{M}_{m=1}\left\| \nabla ^{M+1-m}\mathbf {v }\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}}\nabla ^{m}\mathbf {u} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}}\nabla ^{M}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C\sum \limits ^{M}_{m=1}\left\| \nabla ^{M+1-m}\mathbf {v }\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}}\nabla ^{m-1}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}}\nabla ^{M}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(B.8)

and

$$\begin{aligned} J_{M}= & {} \left| \left\langle \mathbf {v} \cdot \nabla \mathbf {u}^{T}, \Delta ^{M} \mathbf {v} \right\rangle \right| \nonumber \\= & {} \sum \limits ^{M}_{m=0}\left( \begin{array}{l} M\\ m \end{array}\right) \left| \left\langle \nabla ^{M}\mathbf {v}\cdot \nabla \nabla ^{m}\mathbf {u}, \nabla ^{M-m} \mathbf {v } \right\rangle \right| \nonumber \\\le & {} C \sum \limits ^{M}_{m=0}\left\| \nabla ^{M-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \nabla ^{m+1}\mathbf {u}\cdot \nabla ^{M}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C \sum \limits ^{M}_{m=0}\left\| \nabla ^{M-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\left\| \nabla ^{m+1}\mathbf {u} \right\| _{L^{4}(\mathbb {R}^{n})} \left\| \nabla ^{M}\mathbf {v}\right\| _{L^{4}(\mathbb {R}^{n})}\nonumber \\\le & {} C \sum \limits ^{M}_{m=0}\left\| \nabla ^{M-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}}\nabla ^{m+1}\mathbf {u} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}} \nabla ^{M}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C \sum \limits ^{M}_{m=0}\left\| \nabla ^{M-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}}\nabla ^{m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}} \nabla ^{M}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(B.9)

Combining (B.8) with (B.9) yields that

$$\begin{aligned} I_{M}+J_{M}\le & {} C \sum \limits ^{M}_{m=0} \left\| \nabla ^{M-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}} \nabla ^{m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}} \nabla ^{M}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C \left\| \nabla ^{M}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}} \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}}\nabla ^{M} \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+C \sum \limits ^{M-1}_{m=1} \left\| \nabla ^{M-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}} \nabla ^{m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}} \nabla ^{M}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+C \left\| \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}} \nabla ^{M}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C \left\| \nabla ^{M}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\left\| \mathbf {v}\right\| ^{1-\frac{n}{4}} _{L^{2}(\mathbb {R}^{n})}\left\| \nabla \mathbf {v}\right\| ^{\frac{n}{4}} _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}}\nabla ^{M} \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+C \sum \limits ^{M-1}_{m=1} \left\| \nabla ^{M-m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\left\| \nabla ^{m}\mathbf {v}\right\| ^{1-\frac{n}{4}} _{L^{2}(\mathbb {R}^{n})}\left\| \nabla ^{m+1}\mathbf {v}\right\| ^{\frac{n}{4}} _{L^{2}(\mathbb {R}^{n})} \left\| \Lambda ^{\frac{n}{4}}\nabla ^{M} \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+C\left\| \mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{\frac{n}{4}}\nabla ^{M} \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\\lesssim & {} \left\| \nabla ^{M}\mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\left\| \mathbf {v}\right\| ^{2-\frac{n}{2}} _{L^{2}(\mathbb {R}^{n})}\left\| \nabla \mathbf {v}\right\| ^{\frac{n}{2}} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+\sum \limits ^{M-1}_{m=1}\left( \left\| \nabla ^{M-m}\mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}+\left\| \nabla ^{m}\mathbf {v}\right\| ^{(1-\frac{n}{4})\times 2} _{L^{2}(\mathbb {R}^{n})}\left\| \nabla ^{m+1}\mathbf {v}\right\| ^{\frac{n}{4}\times 2} _{L^{2}(\mathbb {R}^{n})}\right) \nonumber \\&+\left\| \mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{\frac{n}{4}}\nabla ^{M} \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}+\frac{\nu }{4} \left\| \Lambda ^{\frac{n}{4}}\nabla ^{M} \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(B.10)

This together with (B.2) and the smallness assumption of the initial data for \(\beta =\dfrac{n}{4}\) in (VI) with \(M\le K\) ensures that

$$\begin{aligned}&\frac{d}{dt}\left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+ \nu \left\| \Lambda ^{\frac{n}{4}}\nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \lesssim \left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^{\frac{n}{4}}\mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})} +\sum \limits ^{M-1}_{m=1} \left\| \nabla ^{M-m} \mathbf {v}\right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\left\| \Lambda ^\frac{n}{4}\nabla ^{m}\mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \lesssim \left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\left\| \mathbf {v} \right\| ^{2-\frac{n}{2}}_{L^{2}(\mathbb {R}^{n})}\left\| \nabla \mathbf {v} \right\| ^{\frac{n}{2}}_{L^{2}(\mathbb {R}^{n})} +\sum \limits ^{M-1}_{m=1} \left\| \nabla ^{M-m} \mathbf {v}\right\| ^{2-\frac{n}{2}}_{L^{2}(\mathbb {R}^{n})}\left\| \nabla ^{m+1}\mathbf {v} \right\| ^{\frac{n}{2}}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \lesssim \left( \left\| \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\left\| \nabla \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\right) \left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad +\sum \limits ^{M-2}_{m=1}\left( \left\| \nabla ^{m} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\left\| \nabla ^{m+1} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\right) \left\| \nabla ^{M-m} \mathbf {v}\right\| ^{2 }_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad + \left( \left\| \nabla ^{M-1} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\right) \left\| \nabla \mathbf {v}\right\| ^{2 }_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \lesssim \left( (1+t)^{-\frac{n}{2\beta }}+(1+t)^{-\frac{1}{ \beta }-\frac{n}{2\beta }}\right) \left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad +\sum \limits ^{M-2}_{m=1}\left( (1+t)^{-\frac{m}{ \beta }-\frac{n}{2\beta }}+(1+t)^{-\frac{m+1}{ \beta }-\frac{n}{2\beta }}\right) (1+t)^{-\frac{M-m}{ \beta }-\frac{n}{2\beta }}\nonumber \\&\qquad + (1+t)^{-\frac{M-1}{ \beta }-\frac{n}{2\beta }}(1+t)^{-\frac{1}{ \beta }-\frac{n}{2\beta }} +(1+t)^{-\frac{1}{ \beta }-\frac{n}{2\beta }} \left\| \nabla ^{M} \mathbf {v}\right\| ^{2 }_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \lesssim (1+t)^{ -\frac{n}{2\beta }} \left\| \nabla ^{M} \mathbf {v}\right\| ^{2 }_{L^{2}(\mathbb {R}^{n})}+(1+t)^{-\frac{M}{ \beta }-\frac{n}{\beta }}. \end{aligned}$$
(B.11)

Note that \(\left\| \nabla ^{M} \mathbf {v } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\le C\) by Proposition 2.4, (I), (II) of this theorem and the inductive assumption (B.1), applying interpolation inequality and a bootstrap argument, it follows from (B.7) and (B.11) that for \(\displaystyle \frac{n}{4}\le \beta <1\) with \(n=2,3\),

$$\begin{aligned}&\frac{d}{dt}\left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+ \nu \left\| \Lambda ^{\beta }\nabla ^{M} \mathbf { v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C(1+t)^{-\frac{n}{2\beta } }\left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+C(1+t)^{-\frac{M}{\beta } -\frac{n}{\beta } }\nonumber \\&\quad \le C(1+t)^{-\frac{n}{2\beta } }\left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+C(1+t)^{-\frac{M}{\beta } -\frac{n}{2\beta }-1 }(1+t)^{ -\frac{n}{2\beta }+\frac{1}{\beta } }\nonumber \\&\quad \le C(1+t)^{-\frac{M}{\beta }-\frac{n}{2\beta }-1 }. \end{aligned}$$
(B.12)

Here, we applied the fact that for \(n=2,3\),\(-1+\frac{1}{\beta }>0\) and \( -\frac{n}{2\beta }+\frac{1}{\beta } \le 0\). Since \(\left| \mathcal {F}(\mathbf {v})\right| \le C\) by (III-1) of this theorem, applying (IV) of this theorem to estimate (B.12) gives rise to

$$\begin{aligned} \left\| \nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\le C(1+t)^{-\frac{M}{\beta }-\frac{n}{2\beta }}. \end{aligned}$$

Combinig Step 1 with Step 2 and Step 3 finishes the proof of (VI-1).

Appendix C

We show (VI-2) of Theorem 4.1 here. We will adopt an inductive argument as above. The inductive assumption is as follows.

For \(p\le \frac{K}{2\beta }\), the decay rate

$$\begin{aligned} \left\| \partial ^{p}_{t} \nabla ^{m} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\le C(1+t)^{-2p-\frac{m}{\beta }-\frac{n}{2\beta }} \end{aligned}$$
(C.1)

holds for all \(p<P\) and m such that \(2p\beta +m\le K\). Here, p, P and m are all non-negative integers.

In the following, based on the inductive assumption (C.1), we divided the proof into four steps. In Step 1, we show that for \(\displaystyle |\xi |^{2\beta }\le \frac{b}{\nu (1+t)}\), \(\displaystyle \left\| \partial ^{p}_{t} \hat{\mathbf {v}}(\xi )\right\| \le C(1+t)^{-P}\). In the second step, we verify that the decay rate (C.1) holds for \(p=P\) and \(m=0\) by an inductive argument on p. We will check the decay rate (C.1) holds for any \(m>0\) by another inductive argument on m in the third step. In the fourth step, we conclude the expected result by a bootstrap argument.

We begin to show (VI-2) step by step in detail.

Step 1 We show for \(\displaystyle |\xi |^{2\beta }\le \frac{b}{\nu (1+t)}\), \(\displaystyle \left\| \partial ^{p}_{t} \hat{\mathbf {v}}(\xi )\right\| \le C(1+t)^{-P}\).

By (C.1) we get for all \(p<P\) and \(m=0,1\),

$$\begin{aligned} \left\| \partial ^{p}_{t} \nabla ^{m} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\le C(1+t)^{-2p-\frac{m}{\beta }-\frac{n}{2\beta }}. \end{aligned}$$
(C.2)

By the aid of (V) of theorem 4.1, (C.2) implies that for \(\displaystyle |\xi |^{2\beta }\le \frac{b}{\nu (1+t)}\),

$$\begin{aligned} \left\| \partial ^{P}_{t} \hat{\mathbf {v}}(\xi ) \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\le C(1+t)^{-P}. \end{aligned}$$
(C.3)

Step 2 We now show that the decay rate (C.1) holds for \(p=P\) and \(m=0\) by an inductive argument on p.

Note that \(\mathbf {v}\cdot \nabla \mathbf {u}^{T}=\nabla (\mathbf {u}\mathbf {v})-\mathbf {u}\cdot \nabla \mathbf {v}^{T}\) by (4.4) and \(\text{ div } ~\mathbf {v}=0\), choosing P and M such that \(M+2P\le K\), then applying \(\partial ^{P}_{t}\) to the first equation in (1.1), multiplying the resulting equation by \(\partial ^{P}_{t}\Delta ^{M}\mathbf {v}\) and integrating in space variable x yields, after some integration by parts,

$$\begin{aligned}&\frac{d}{dt}\left\| \partial ^{P}_{t} \nabla ^{M}\mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+2\nu \left\| \partial ^{P}_{t}\nabla ^{M}\Lambda ^{\beta } \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})} \nonumber \\&\le \left| \left\langle \partial ^{P}_{t}(\mathbf {u} \cdot \nabla \mathbf {v}), \partial ^{P}_{t}\Delta ^{M} \mathbf {v} \right\rangle \right| +\left| \left\langle \partial ^{P}_{t}\left( \mathbf {v} \cdot \nabla \mathbf {u}^{T}\right) , \partial ^{P}_{t}\Delta ^{M} \mathbf {v }\right\rangle \right| \nonumber \\&\quad =\left| \left\langle \partial ^{P}_{t}(\mathbf {u} \cdot \nabla \mathbf {v}), \partial ^{P}_{t}\Delta ^{M} \mathbf {v} \right\rangle \right| +\left| \left\langle \partial ^{P}_{t}\left( \mathbf {u} \cdot \nabla \mathbf {v}^{T}\right) , \partial ^{P}_{t}\Delta ^{M} \mathbf {v} \right\rangle \right| \nonumber \\&\quad \triangleq I_{M,P}+J_{M,P}. \end{aligned}$$
(C.4)

In the following, we deal with the two terms on the right hand side of (C.4) by considering two cases:

Case (1) \(\displaystyle \frac{n}{4}< \beta < 1\) for \(n=2,3\);

Case (2) \(\displaystyle \beta =\frac{n}{4}\) for \(n=2,3\).

\(\heartsuit \) We first consider Case (1) \(\displaystyle \frac{n}{4}<\beta <1\) for \(n=2,3\).

In this case, a straightforward computation shows that

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle \dfrac{n}{\beta }=\dfrac{2n}{n-2\cdot \frac{n-2\beta }{2}},~~\dfrac{1}{2}=\dfrac{n-2}{2}<\dfrac{n-2\beta }{2}<\dfrac{3}{4}~~ &{}\text{ for }~~n=3, \\ \displaystyle 0=\dfrac{n-2}{2}<\dfrac{n-2\beta }{2}< \dfrac{1}{2}~~ &{}\text{ for }~~n=2, \\ \displaystyle B=\dfrac{n-2\beta }{2}+1-\beta =\dfrac{n}{2}+1-2\beta ,&{} \\ \displaystyle \dfrac{n}{2}-1<B< 1,~~ &{}\text{ for }~~n=2,3. \end{array}\right. \end{aligned}$$
(C.5)

Note that (C.4), one attains

$$\begin{aligned} I_{M,P}= & {} \left| \left\langle \partial ^{P}_{t}(\mathbf {u} \cdot \nabla \mathbf {v}), \partial ^{P}_{t}\Delta ^{M} \mathbf {v} \right\rangle \right| \nonumber \\= & {} \sum \limits ^{P}_{p=0} \sum \limits ^{M-1}_{m=0} \left( \begin{array}{l} P\\ p \end{array}\right) \left( \begin{array}{c} M-1\\ m \end{array}\right) \left| \left\langle \Lambda ^{1-\beta }\left( \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right) , \partial ^{P}_{t} \nabla ^{M }\Lambda ^{\beta } \mathbf {v} \right\rangle \right| \nonumber \\\le & {} \sum \limits ^{P}_{p=0} \sum \limits ^{M-1}_{m=0}\left( \begin{array}{l} P\\ p \end{array}\right) \left( \begin{array}{c} M-1\\ m \end{array}\right) \left\| \Lambda ^{1-\beta }\left( \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right) \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\cdot \left\| \partial ^{P}_{t} \nabla ^{M }\Lambda ^{\beta } \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.6)

Thanks to higher order fractional Leibniz’s rule [18], \(\displaystyle \left\| \Lambda ^{1-\beta }\left( \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right) \right\| _{L^{2}(\mathbb {R}^{n})}\) can be bounded as follows:

$$\begin{aligned}&\displaystyle \left\| \Lambda ^{1-\beta }\left( \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right) \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le \left\| \Lambda ^{1-\beta }\left( \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right) \right. \nonumber \\&\qquad -\partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\Lambda ^{1-\beta }\mathbf {v}\nonumber \\&\qquad \left. -\partial ^{p}_{t}\Lambda ^{1-\beta }\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad +\left\| \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\Lambda ^{1-\beta }\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad +\left\| \partial ^{p}_{t}\Lambda ^{1-\beta }\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.7)

Due to Lemma 2.10, (I) of Lemma 2.11 and (C.5), for \(\displaystyle \frac{1}{2}=\frac{1}{n/\beta }+\frac{1}{2n/(n-2\beta )}\) and \(0<1-\beta<\beta <1\), the first term on the right hand side of (C.7) can be bounded by

$$\begin{aligned}&\left\| \Lambda ^{1-\beta }\left( \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right) \right. \nonumber \\&\qquad -\partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\Lambda ^{1-\beta }\mathbf {v}\nonumber \\&\qquad \left. -\partial ^{p}_{t}\Lambda ^{1-\beta }\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t}\Lambda ^{1-\beta } \nabla ^{m}\mathbf {u} \right\| _{L^{\frac{n}{\beta }}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \mathbf {v} \right\| _{L^{\frac{2n}{n-2\beta }}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t}\Lambda ^{\frac{n}{2}+1-2\beta } \nabla ^{m}\mathbf {u} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{ \beta }\mathbf { v }\right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t} \nabla ^{m}\mathbf {u} \right\| ^{2\beta -\frac{n}{2}}_{L^{2}(\mathbb {R}^{n})}\left\| \partial ^{p}_{t} \nabla ^{m+1}\mathbf {u} \right\| ^{\frac{n}{2}+1-2\beta }_{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{ \beta }\mathbf { v }\right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t} \nabla ^{m-1}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{ \beta } \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.8)

On the other hand, note that Lemmas 2.8, 2.9 and 2.11, the second and the third terms on the right hand side of (C.7) can be bounded by

$$\begin{aligned}&\left\| \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\Lambda ^{1-\beta }\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C\left\| \partial ^{p}_{t} \nabla ^{m}\mathbf {u} \right\| _{L^{\frac{n}{ 2\beta -1 }}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{1-\beta }\mathbf {v} \right\| _{L^{\frac{2n}{n-2(2\beta -1)}}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t} \nabla ^{m}\mathbf {u} \right\| _{L^{\frac{2n}{n-2\left( \frac{n}{2}+1-2\beta \right) }}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{\beta }\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t} \nabla ^{m}\Lambda ^{\frac{n}{2}+1-2\beta }\mathbf {u } \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{\beta }\mathbf {v } \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t} \nabla ^{m-1} \mathbf {v }\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{\beta }\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}, \end{aligned}$$
(C.9)

and

$$\begin{aligned}&\left\| \partial ^{p}_{t}\Lambda ^{1-\beta }\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t} \Lambda ^{1-\beta } \nabla ^{m}\mathbf {u} \right\| _{L^{\frac{n}{\beta }}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \mathbf { v} \right\| _{L^{\frac{2n}{n-2\beta }}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t} \Lambda ^{\frac{n}{2}+1-2\beta } \nabla ^{m}\mathbf {u} \right\| _{L^{\frac{n}{\beta }}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{ \beta } \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t} \nabla ^{m-1}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{ \beta } \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.10)

Hence, combining (C.6) with (C.7), (C.8), (C.9) and (C.10) gives rise to

$$\begin{aligned} I_{M,P}= & {} \left| \left\langle \partial ^{P}_{t}\left( \mathbf {u} \cdot \nabla \mathbf {v}\right) , \partial ^{P}_{t}\Delta ^{M} \mathbf {v} \right\rangle \right| \nonumber \\\le & {} C\sum \limits ^{P}_{p=0} \sum \limits ^{M-1}_{m=0} \left\| \partial ^{p}_{t} \nabla ^{m+1}\mathbf {u} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{\beta } \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\cdot \left\| \partial ^{P}_{t} \nabla ^{M}\Lambda ^{\beta }\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\\le & {} C\sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t}\mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M } \Lambda ^{\beta }\mathbf { v } \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+C\sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t}\nabla \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M -1} \Lambda ^{\beta } \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+C\sum \limits ^{P}_{p=0}\sum \limits ^{M-1}_{m=2} \left\| \partial ^{p}_{t}\nabla ^{m-1} \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M -m} \Lambda ^{\beta } \mathbf {v } \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+\frac{\nu }{4} \left\| \partial ^{P }_{t} \nabla ^{M } \Lambda ^{\beta } \mathbf {v } \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.11)

Similar estimates to that used in the estimates for \(I_{M,P}\) are valid for \(J_{M,P}\) in (C.4):

$$\begin{aligned} J_{M,P}= & {} \left| \left\langle \partial ^{P}_{t}\left( \mathbf {u} \cdot \nabla \mathbf {v}^{T}\right) , \partial ^{P}_{t}\Delta ^{M} \mathbf {v} \right\rangle \right| \nonumber \\\le & {} C\sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t}\mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\left\| \partial ^{P-p}_{t} \nabla ^{M } \Lambda ^{\beta } \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+ C\sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t}\nabla \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\left\| \partial ^{P-p}_{t} \nabla ^{M-1 } \Lambda ^{\beta } \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+ C\sum \limits ^{P}_{p=0}\sum \limits ^{M-1}_{m=2} \left\| \partial ^{p}_{t}\nabla ^{m-1} \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\left\| \partial ^{P-p}_{t} \nabla ^{M -m} \Lambda ^{\beta } \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+ \frac{\nu }{4} \left\| \partial ^{P }_{t} \nabla ^{M } \Lambda ^{\beta } \mathbf {v }\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.12)

Substituting the above estimates (C.11) and (C.12) into (C.4) leads to the following estimate under the case \(\displaystyle \frac{n}{4}< \beta < 1\) with \(n=2,3\):

$$\begin{aligned}&\frac{d}{dt} \left\| \partial ^{P}_{t}\nabla ^{M} \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}+ \nu \left\| \partial ^{P }_{t} \nabla ^{M } \Lambda ^{\beta } \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C\sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t}\mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\left\| \partial ^{P-p}_{t} \nabla ^{M } \Lambda ^{\beta } \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad + C\sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t}\nabla \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-1 } \Lambda ^{\beta } \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad +C\sum \limits ^{P}_{p=0}\sum \limits ^{M-1}_{m=2} \left\| \partial ^{p}_{t}\nabla ^{m-1}\mathbf { v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M -m} \Lambda ^{\beta } \mathbf {v} \right\| ^{2} _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.13)

\(\heartsuit \) We now tackle (C.4) under the Case (2) \(\displaystyle \beta =\frac{n}{4}\) for \(n=2,3\).

In this case, it is easy to check that \(\displaystyle 1-\frac{n}{4}\le \frac{n}{4}\). Recall (C.4), we shall estimate \(I_{M,P}\) and \(J_{M,P}\), respectively. We first handle \(I_{M,P}\).

By a similar proof to that for case (1), one deduces the following:

$$\begin{aligned} I_{M,P}= & {} \left| \left\langle \partial ^{P}_{t}(\mathbf {u} \cdot \nabla \mathbf {v}), \partial ^{P}_{t}\Delta ^{M} \mathbf {v} \right\rangle \right| \nonumber \\= & {} \sum \limits ^{P}_{p=0} \sum \limits ^{M-1}_{m=0}\left( \begin{array}{l} P\\ p \end{array}\right) \left( \begin{array}{c} M-1\\ m \end{array}\right) \left\langle \Lambda ^{1-\frac{n}{4}}\left( \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right) , \partial ^{P}_{t} \nabla ^{M }\Lambda ^{\frac{n}{4}}\mathbf { v} \right\rangle \nonumber \\\le & {} \sum \limits ^{P}_{p=0} \sum \limits ^{M-1}_{m=0}\left( \begin{array}{l} P\\ p \end{array}\right) \left( \begin{array}{c} M-1\\ m \end{array}\right) \left\| \Lambda ^{1-\frac{n}{4}}\left( \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right) \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\cdot \left\| \partial ^{P}_{t} \nabla ^{M }\Lambda ^{\frac{n}{4}} \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.14)

However, direct calculation gives

$$\begin{aligned}&\left\| \Lambda ^{1-\frac{n}{4}}\left( \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right) \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le \left\| \Lambda ^{1-\frac{n}{4}}\left( \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right) \right. \nonumber \\&\qquad -\partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\Lambda ^{1-\frac{n}{4}}\mathbf {v}\nonumber \\&\qquad -\left. \partial ^{p}_{t}\Lambda ^{1-\frac{n}{4}}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad +\left\| \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\Lambda ^{1-\frac{n}{4}}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad +\left\| \partial ^{p}_{t}\Lambda ^{1-\frac{n}{4}}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.15)

Due to Lemma 2.9 and Lemma 2.11, one deduces that for \(\displaystyle 0<\beta _{1}<1-\frac{n}{4}\), the first term on the right hand side of (C.15) can be estimated by

$$\begin{aligned}&\left\| \Lambda ^{1-\frac{n}{4}}\left( \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right) \right. \nonumber \\&\qquad -\partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\Lambda ^{1-\frac{n}{4}}\mathbf {v}\nonumber \\&\qquad \left. -\partial ^{p}_{t}\Lambda ^{1-\frac{n}{4}}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t}\Lambda ^{1- \frac{n}{4}-\beta _{1}} \nabla ^{m}\mathbf {u} \right\| _{L^{\frac{2n}{n-2(n/4+\beta _{1})}}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{ \beta _{1}} \mathbf {v} \right\| _{L^{\frac{2n}{n-2(n/4-\beta _{1}) }}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t} \nabla ^{m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{\frac{n}{4}} \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}, \end{aligned}$$
(C.16)

where \(\displaystyle \beta _{1}\in \left( 0,\frac{1}{2}\right) \), \(\displaystyle 1-\frac{n}{4}-\beta _{1}\in \left( 0,\frac{1}{2}\right) \), \(\displaystyle \frac{1}{2} =\frac{1}{p_{1}}+\frac{1}{p_{2}}\) with \(p_{1},p_{2}\in (1,\infty )\), \(\displaystyle p_{1}=\frac{2n}{n-2(n/4+\beta _{1})}\), \(\displaystyle p_{2}=\frac{2n}{n-2(n/4-\beta _{1})}\).

Let us turn to estimate the second and the third terms on the right hand side of (C.15). Thanks to Agmon’s inequality, interpolation inequality, Lemma 2.12 and the assumption of (VI) for \(\beta =\dfrac{n}{4}\), we have

$$\begin{aligned}&\left\| \partial ^{p}_{t}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\Lambda ^{1-\frac{n}{4}}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad + \left\| \partial ^{p}_{t}\Lambda ^{1-\frac{n}{4}}\nabla ^{m}\mathbf {u}\cdot \partial ^{P-p}_{t}\nabla ^{M-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t} \nabla ^{m}\mathbf {u} \right\| _{L^{\infty }(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{ 1-\frac{n}{4}} \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad +\left\| \partial ^{p}_{t} \Lambda ^{ 1-\frac{n}{4}} \nabla ^{m}\mathbf {u} \right\| _{L^{4}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \mathbf {v} \right\| _{L^{4}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \left\| \partial ^{p}_{t} \nabla ^{m}\mathbf {u} \right\| ^{\frac{1}{2}} _{H^{1}(\mathbb {R}^{n})}\left\| \partial ^{p}_{t} \nabla ^{m}\mathbf {u} \right\| ^{\frac{1}{2}} _{H^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t} \nabla ^{M-m} \Lambda ^{\frac{n}{4}} \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad +C \left\| \partial ^{p}_{t}\Lambda ^{ 1-\frac{n}{4}+\frac{n}{4}} \nabla ^{m}\mathbf {u} \right\| _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{ \frac{n}{4}} \nabla ^{M-m}\mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C\left\| \partial ^{p}_{t} \nabla ^{m}\mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}\left\| \partial ^{P-p}_{t} \nabla ^{M-m}\Lambda ^{ \frac{n}{4}} \mathbf {v} \right\| _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.17)

This together with (C.14), (C.15) and (C.16) gives rise to

$$\begin{aligned}&I_{M,P}= \left| \left\langle \partial ^{P}_{t}(\mathbf {u} \cdot \nabla \mathbf {v}), \partial ^{P}_{t}\Delta ^{M} \mathbf {v} \right\rangle \right| \nonumber \\&\quad \le C\sum \limits ^{P}_{p=0} \sum \limits ^{M-1}_{m=0}\left\| \partial ^{p}_{t}\nabla ^{m} \mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M-m} \mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p }_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M } \mathbf {v}\right\| _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t} \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad + C \sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t} \nabla \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M-1 } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad + C \sum \limits ^{P}_{p=0} \sum \limits ^{M-1}_{m=2} \left\| \partial ^{p}_{t} \nabla ^{m} \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M-m } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad + \frac{\nu }{4}\left\| \partial ^{P }_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.18)

Here we have used Cauchy–Schwarz inequality and Young’s inequality in the third inequality.

In the same manner, one may deduce the following estimate for \(J_{M,P}\) in (C.4):

$$\begin{aligned} J_{M,P}= & {} \left| \left\langle \partial ^{P}_{t}\left( \mathbf {u} \cdot \nabla \mathbf {v}^{T}\right) , \partial ^{P}_{t}\Delta ^{M} \mathbf {v} \right\rangle \right| \nonumber \\\le & {} C \sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t} \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+ C \sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t} \nabla \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M-1 }\mathbf { v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+ C \sum \limits ^{P}_{p=0} \sum \limits ^{M-1}_{m=2} \left\| \partial ^{p}_{t} \nabla ^{m} \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M-m } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&+ \frac{\nu }{4}\left\| \partial ^{P }_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.19)

Therefore, under the case of \(\displaystyle \beta =\frac{n}{4}\) with \(n=2,3\), substituting (C.18) and (C.19) into (C.4) yields that

$$\begin{aligned}&\frac{d}{dt} \left\| \partial ^{P}_{t}\nabla ^{M } \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\nu \left\| \partial ^{P}_{t}\Lambda ^{\frac{n}{4}} \nabla ^{M } \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t} \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad + C \sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t} \nabla \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M-1 } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad + C \sum \limits ^{P}_{p=0} \sum \limits ^{M-1}_{m=2} \left\| \partial ^{p}_{t} \nabla ^{m}\mathbf { v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\frac{n}{4}}\nabla ^{M-m } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.20)

With (C.4), (C.13) and (C.20), for \(\displaystyle \frac{n}{4}\le \beta < 1\) with \(n=2,3\), we always have

$$\begin{aligned}&\frac{d}{dt}\left\| \partial ^{P}_{t}\nabla ^{M } \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\nu \left\| \partial ^{P}_{t}\Lambda ^{\beta } \nabla ^{M } \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C \sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t} \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\beta }\nabla ^{M } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad + C \sum \limits ^{P}_{p=0} \left\| \partial ^{p}_{t} \nabla \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\beta }\nabla ^{M-1 } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad + C \sum \limits ^{P}_{p=0} \sum \limits ^{M}_{m=2} \left\| \partial ^{p}_{t} \nabla ^{m} \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})} \left\| \partial ^{P-p}_{t}\Lambda ^{\beta }\nabla ^{M-m } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}. \end{aligned}$$
(C.21)

Note that the inductive assumption (C.1), one deduces that for \(p=P\) and \(m=0\)

$$\begin{aligned}&\frac{d}{dt}\left\| \partial ^{P}_{t} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\nu \left\| \partial ^{P}_{t}\Lambda ^{\beta } \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})} \\&\quad \le C (1+t)^{-\frac{n}{2\beta }}\left\| \partial ^{p}_{t}\Lambda ^{\beta } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}+ C (1+t)^{-2p-\frac{n}{2\beta }} (1+t)^{-2(P-p) -\frac{\beta }{\beta }-\frac{n}{2\beta }} \\&\quad \le C (1+t)^{-\frac{n}{2\beta }}\left\| \partial ^{p}_{t} \Lambda ^{\beta } \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}+ C (1+t)^{-2P-1-\frac{n}{\beta }}. \end{aligned}$$

Takeing t large enough such that \(\displaystyle C(1+t)^{- \frac{n}{ 2 \beta } }\le \frac{\nu }{2}\), the above inequality then implies that

$$\begin{aligned} \frac{d}{dt}\left\| \partial ^{P}_{t} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\frac{\nu }{2}\left\| \partial ^{P}_{t}\Lambda ^{\beta } \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\le C(1+t)^{-2P-1 -\frac{ n}{ \beta }}. \end{aligned}$$
(C.22)

This together with (IV) of this theorem ensures that (C.1) and (C.3) hold for \(p=P\) and \(m=0\).

So far we have shown that for \(m=0\), and \(\forall P\le \frac{K}{2}\), there holds

$$\begin{aligned} \frac{d}{dt}\left\| \partial ^{P}_{t} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\frac{\nu }{2}\left\| \partial ^{P}_{t}\Lambda ^{\beta } \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\le C(1+t)^{-2P-1 -\frac{ n}{ \beta }}. \end{aligned}$$

This deduces by Gronwall’s inequality that

$$\begin{aligned} \frac{d}{dt}\left\| \partial ^{P}_{t} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})} \le C(1+t)^{-2P-\frac{ n}{ \beta }}. \end{aligned}$$
(C.23)

Step 3 We show that the decay rate (C.1) holds for any \(m\le M+1\) for \(p<P\), and \(m<M\) for \(p=P\). That is,

$$\begin{aligned} \left\| \partial ^{p}_{t}\nabla ^{m} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\le C(1+t)^{-2p-\frac{m}{\beta }-\frac{n}{2\beta }}. \end{aligned}$$
(C.24)

The base case is (C.23) where (C.24) holds for \(p=P\) and \(m=0\). In the following, based on the inductive assumption (C.24), we will show that the decay rate (C.24) holds for \(m=M\) and \(p=P\).

Recall (I) and (II) of this theorem, applying the inductive assumption (C.21)–(C.24), one deduces that

$$\begin{aligned}&\frac{d}{dt}\left\| \partial ^{P}_{t}\nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}+\nu \left\| \partial ^{P}_{t}\Lambda ^{\beta } \nabla ^{M}\mathbf { v } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})}\nonumber \\&\quad \le C (1+t)^{-\frac{n}{2\beta }}\left\| \partial ^{P}_{t} \Lambda ^{\beta }\nabla ^{M} \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad + C (1+t)^{ -\frac{1}{ \beta }-\frac{n}{2\beta }}\left\| \partial ^{P}_{t} \Lambda ^{\beta }\nabla ^{M-1} \mathbf {v}\right\| ^{2} _{L^{2}(\mathbb {R}^{n})}\nonumber \\&\qquad + C (1+t)^{-2P-\frac{M}{ \beta }-\frac{n}{ \beta }-1}. \end{aligned}$$
(C.25)

Taking t large enough such that \(\displaystyle C(1+t)^{ -\frac{n}{ 2\beta }}\le \frac{\nu }{2}\), thanks to (C.3), using (IV) once again deduces that

$$\begin{aligned} \left\| \partial ^{P}_{t}\nabla ^{M} \mathbf {v} \right\| ^{2}_{L^{2}(\mathbb {R}^{n})} \le C(1+t)^{-2P -\frac{ M}{ \beta }-\frac{ n}{\beta }}\le C(1+t)^{-2P -\frac{ M}{ \beta }-\frac{ n}{2\beta }}. \end{aligned}$$
(C.26)

This implies that the inductive assumption (C.24) holds for \(m=M\) and \(p=P\). By another bootstrap argument, we obtain for all \(m+2p\beta \le K\), the following optimal decay holds:

$$\begin{aligned} \left\| \partial ^{p}_{t}\nabla ^{m} \mathbf {v } \right\| ^{2}_{L^{2}(\mathbb {R}^{n})} \le C(1+t)^{-2p -\frac{m}{ \beta }-\frac{ n}{2\beta }}. \end{aligned}$$

This completes the proof of (VI-2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Z., He, Y. & Meng, L. Large time behavior and convergence for the Camassa–Holm equations with fractional Laplacian viscosity. Calc. Var. 57, 162 (2018). https://doi.org/10.1007/s00526-018-1421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1421-z

Mathematics Subject Classification

Navigation