Skip to main content
Log in

Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We use nonsmooth critical point theory and the theory of geodesics with obstacle to show a multiplicity result about orthogonal geodesic chords in a Riemannian manifold (with boundary) which is homeomorphic to an N-disk. This applies to brake orbits in a potential well of a natural Hamiltonian system, providing a further step towards the proof of a celebrated conjecture by Seifert (Math Z 51:197–216, 1948).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is a standard construction of metrics for which a given closed embedded submanifold of a differentiable manifold is totally geodesic. Such metrics are constructed in a tubular neighborhood first, using a normal bundle construction, and then extended using a partition of unity argument.

References

  1. Bos, W.: Kritische Sehenen auf Riemannischen Elementarraumstücken. Math. Ann. 151, 431–451 (1963)

    Article  MathSciNet  Google Scholar 

  2. Canino, A.: On p-convex sets and geodesics. J. Differ. Equ. 75, 118–157 (1988)

    Article  MathSciNet  Google Scholar 

  3. Canino, A., Degiovanni, M.: Nonsmooth critical point theory and quasilinear elliptic equations. In: Granas A., Frigon, M. (eds.) Proceedings of Topological Methods in Differential Equations and Inclusions, Montreal, pp. 1–50 (1994)

  4. Corvellec, J:-N., Degiovanni, M., Marzocchi, M:: Deformation properties for continuos functionals adn critical point theory. Topol. Methods Nonlinerar Anal. 1, 151–171 (1993)

    Article  Google Scholar 

  5. De Giorgi, E., Marino, A., Tosques, M.: Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68, 180–187 (1980)

    MathSciNet  MATH  Google Scholar 

  6. Degiovanni, M., Marino, A., Tosques, M.: Evolution equation with lack of convexity. Nonlinear Anal. 9, 1401–1443 (1985)

    Article  MathSciNet  Google Scholar 

  7. Degiovanni, M., Marzocchi, M.: A critical point theory for nonsmooth functionals. Ann. Math. Pura Appl. 167, 73–100 (1994)

    Article  MathSciNet  Google Scholar 

  8. Fadell, E., Husseini, S.: Relative cohomological index theories. Adv. Math. 64, 1–31 (1987)

    Article  MathSciNet  Google Scholar 

  9. Fournier, G., Willem, M.: Multiple solutions of the forced double pendulum equation. Ann. Inst. H. Poincaré, Analyse non Lineaire 6(suppl.), 259–281 (1989)

    Article  MathSciNet  Google Scholar 

  10. Giambò, R., Giannoni, F., Piccione, P.: Orthogonal geodesic chords, brake orbits and homoclinic orbits in Riemannian manifolds. Adv. Differ. Equ. 10, 931–960 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Giambò, R., Giannoni, F., Piccione, P.: Existence of orthogonal geodesic chords on Riemannian manifolds with concave boundary and homeomorphic to the \(N\)-dimensional disk. Nonlinear Anal. Ser. A Theory Methods Appl. 73, 290–337 (2010)

    Article  MathSciNet  Google Scholar 

  12. Giambò, R., Giannoni, F., Piccione, P.: Multiple brake orbits and homoclinics in Riemannian manifolds. Arch. Ration. Mech. Anal. 200, 691–724 (2011)

    Article  MathSciNet  Google Scholar 

  13. Giambò, R., Giannoni, F., Piccione, P.: Examples with minimal number of brake orbits and homoclinics in annular potential regions. J. Differ. Equ. 256, 2677–2690 (2014)

    Article  MathSciNet  Google Scholar 

  14. Giambò, R., Giannoni, F., Piccione, P.: Multiple brake orbits in \(m\)-dimensional disks. Calc. Var. 54, 2553–2580 (2015)

    Article  MathSciNet  Google Scholar 

  15. Giambò, R., Giannoni, F., Piccione, P.: Functions on the sphere with critical points in pairs and orthogonal geodesic chords. J. Differ. Equ. 260, 8261–8275 (2016)

    Article  MathSciNet  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  Google Scholar 

  17. Liu, H., Long, Y.: Resonance identity for symmetric closed characteristics on symmetric convex Hamiltonian energy hypersurfaces and its applications. J. Differ. Equ. 255, 2952–2980 (2013)

    Article  MathSciNet  Google Scholar 

  18. Liu, C., Zhang, D.: Seifert conjecture in the even convex case. Commun. Pure Appl. Math. 67, 1563–1604 (2014)

    Article  MathSciNet  Google Scholar 

  19. Long, Y., Zhang, D., Zhu, C.: Multiple brake orbits in bounded convex symmetric domains. Adv. Math. 203(2), 568–635 (2006)

    Article  MathSciNet  Google Scholar 

  20. Long, Y., Zhu, C.: Closed characteristics on compact convex hypersurfaces in \({\mathbb{R}}^{2n}\). Ann. of Math. (2) 155(2), 317–368 (2002)

    Article  MathSciNet  Google Scholar 

  21. Lusternik, L., Schnirelman, L.: Methodes Topologiques dans les Problemes Variationelles. Hermann, Missouri (1934)

    Google Scholar 

  22. Marino, A., Scolozzi, D.: Geodetiche con ostacolo Boll. U.M.I., (6) 2–B 1–31 (1983)

  23. Rabinowitz, P.H.: Critical point theory and applications to differential equations: a survey. Topological nonlinear analysis. In: Progress in Nonlinear Differential Equations and Applications, 15, Birkhauser Boston, Boston, MA, pp. 464–513 (1995)

  24. Scolozzi, D.: Esistenza e molteplicitá di geodetiche con ostacolo e con estremi variabili. Ricerche Math. 33, 171–201 (1984)

    MathSciNet  Google Scholar 

  25. Scolozzi, D.: Un risultato di locale unicitá per le geodetiche su varietá con bordo, Boll. U.M.I., (6) 5–B 309–327 (1986)

  26. Seifert, H.: Periodische Bewegungen Machanischer Systeme. Math. Z. 51, 197–216 (1948)

    Article  MathSciNet  Google Scholar 

  27. Whitney, H.: The self-intersections of a smooth \(n\)-manifold in \(2n\)-space. Ann. Math. (2) 45, 220–246 (1944)

    Article  MathSciNet  Google Scholar 

  28. Zhang, D.: Brake type closed characteristics on reversible compact convex hypersurfaces in \({\mathbb{R}}^{2n}\). Nonlinear. Anal. 74, 3149–3158 (2011)

    Article  MathSciNet  Google Scholar 

  29. Zhang, D., Liu, C.: Multiplicity of brake orbits on compact convex symmetric reversible hypersurfaces in \({\mathbb{R}}^{2n}\) for \(n \ge 4\). Proc. Lond. Math. Soc. (3) 107, 1–38 (2013)

    Article  MathSciNet  Google Scholar 

  30. Zhang, D., Liu, C.: Multiple brake orbits on compact convex symmetric reversible hypersurfaces in \({\mathbb{R}}^{2n}\). Ann. Inst. H. Poincar ’e Anal. Non Linéaire 31(3), 531–554 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Marco Degiovanni for useful discussions and suggestions concerning the weak slope theory and the study of Palais-Smale sequences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Giannoni.

Additional information

Communicated by P. Rabinowitz.

Appendix A. On the transversality of the normal bundle and the tangent bundle of submanifolds

Appendix A. On the transversality of the normal bundle and the tangent bundle of submanifolds

Let (Mg) be a Riemannian manifold, and let \(S\subset M\) be an embedded submanifold. For the application we aim at, S will be the boundary of M.

The normal bundle of S will be denoted by \({\mathcal {N}}(S)\), and for \(p\in S\), we set \({\mathcal {N}}_p(S)={\mathcal {N}}(S)\cap T_pM\). The normal bundle \({\mathcal {N}}(S)\) and the tangent bundle TS will be considered submanifolds of the tangent bundle TM. Given a point \(p\in S\) and a normal vector \(v\in {\mathcal {N}}_p(S)\), we will denote by \(\alpha ^S_p:T_pS\times T_pS\rightarrow {\mathcal {N}}_p(S)\) the second fundamental form of S at p, and by \(A_v^S:T_pS\rightarrow T_pS\) the shape operator of S at p in the direction v, defined by:

$$\begin{aligned}\phantom {,\quad \forall \,u,u'\in T_pS.}g\big (A_v^S(u),u'\big )=-g\big (\alpha ^S(u,u'),v\big ),\quad \forall \,u,u'\in T_pS.\end{aligned}$$

For \(v\in T_pM\), let us identify \(T_v(TM)\) with \(T_pM\oplus T_pM\), with the first summand being the horizontal space of the Levi–Civita connection of g and the second summand being the vertical subspace.

1.1 A.1. A transversality condition

Proposition A.1

Let \(S_1,S_2\subset M\) hypersurfaces that meet transversally at \(p\in S_1\cap S_2\). Assume that \(v\in T_pM\setminus \{0\}\) belongs to the intersection \({\mathcal {N}}(S_1)\cap TS_2\) and denote by \({\mathcal {A}}_v\subset T_pM\) the subspace:

$$\begin{aligned} {\mathcal {A}}_v=\big \{A_v^{S_1}(w)-\alpha ^{S_2}(w,v):w\in T_pS_1\cap T_pS_2\big \}. \end{aligned}$$
(A.1)

An element \((z,z')\in T_pM\oplus T_pM\cong T_v(TM)\) belongs to the sum \(T_v({\mathcal {N}}_p(S_1)\big )+T_v(TS_2)\) iff \(z'\) belongs to the affine subspace of \(T_pM\):

$$\begin{aligned} \big [A^1_v(u_1)+\alpha ^2_p(u_2,v)\big ]+{\mathcal {A}}_v+T_pS_2, \end{aligned}$$

where \(u_1\in T_pS_1\), \(u_2\in T_pS_2\) are chosen in such a way that \(z=u_1+u_2\). In particular, \({\mathcal {N}}(S_1)\) and \(TS_2\) meet transversally at v if and only if:

$$\begin{aligned} {\mathcal {A}}_v\not \subset T_pS_2. \end{aligned}$$
(A.2)

Proof

Using the identification \(T_v(TM)\cong T_pM\oplus T_pM\), the tangent spaces \(T_v\big ({\mathcal {N}}(S_1)\big )\) and \(T_v(TS_2)\) are given by:

$$\begin{aligned}\begin{aligned}&T_v\big ({\mathcal {N}}(S_1)\big )=\big \{\big (u_1,A_v^{S_1}(u_1)+\lambda \cdot v\big ):u_1\in T_pS_1,\ \lambda \in {\mathbb {R}}\big \},\\&T_v(TS_2)=\big \{\big (u_2,u_2'+\alpha ^{S_2}(u_2,v)\big ):u_2,u_2'\in T_pS_2\big \}. \end{aligned} \end{aligned}$$

From these equalities, one obtains readily a proof of the first statement.

As to the transversality of \({\mathcal {N}}(S_1)\) and \(TS_2\) at v, i.e., \(T_v\big ({\mathcal {N}}(S_1)\big )+T_v(TS_2)=T_v(TM)\), the proof follows from a linear algebra argument (apply next Lemma to \(V=T_pM\), \(V_1=T_pS_1\), \(V_2=T_pS_2\), \({\widetilde{V}}_2=\mathbb {R}\cdot v\), \(A=A^{S_1}_v\) and \(\alpha =\alpha ^{S_2}(\cdot ,v)\)). \(\square \)

Lemma A.2

Let V be a finite dimensional vector space, and let \(V_1,V_2\subset V\) be subspaces with \(V_1+V_2=V\), and \(V_2\) of codimension 1. Let \({\widetilde{V}}_2\subset V_2\) be an arbitrary subspace, let \(A:V_1\rightarrow V_1\) and \(\alpha :V_2\rightarrow V\) be linear maps, and define subspaces \(W_1,W_2\subset V\oplus V\) and \({\mathcal {A}}\subset V\) by:

$$\begin{aligned}\begin{aligned}&W_1=\big \{\big (u_1,A(u_1)+{\widetilde{v}}_2\big ):u_1\in V_1,\ {\widetilde{v}}_2\in {\widetilde{V}}_2\big \},\\&W_2=\big \{\big (u_2,v_2+\alpha (u_2)\big ):u_2,v_2\in V_2\big \},\\&{\mathcal {A}}=\big \{Aw-\alpha w:w\in V_1\cap V_2\big \}. \end{aligned} \end{aligned}$$

Then, \(W_1+W_2=V\oplus V\) if and only if \({\mathcal {A}}\not \subset V_2\).

Proof

The equality \(W_1+W_2=V\oplus V\) holds iff for all \(s,t\in V\), there exist \(u_1\in V_1\), \({\widetilde{v}}_2\in {\widetilde{V}}_2\) and \(u_2,v_2\in V_2\) such that:

$$\begin{aligned} u_1+u_2=s,\quad \text {and}\quad A(u_1)+{\widetilde{v}}_2+v_2+\alpha (u_2)=t. \end{aligned}$$

Since \(V_1+V_2=V\), there exist \({\overline{u}}_1\in V_1\) and \({\overline{u}}_2\in V_2\) such that \({\overline{u}}_1+{\overline{u}}_2=s\); every other pair \((u_1,u_2)\in V_1\times V_2\) with \(u_1+u_2=s\) is of the form \(u_1={\overline{u}}_1+h\) and \(u_2={\overline{u}}_2-h\) for some \(h\in V_1\cap V_2\). Thus, the desired transversality holds iff there exists \(h\in V_1\cap V_2\), \({\widetilde{v}}_2\in {\widetilde{V}}_2\) and \(v_2\in V_2\) such that:

$$\begin{aligned} A({\overline{u}}_1)+A(h)+{\widetilde{v}}_2+v_2+\alpha ({\overline{u}}_2)-\alpha (h)=t, \end{aligned}$$

i.e.,

$$\begin{aligned} A(h)-\alpha (h)+v_2=t-{\widetilde{v}}_2-A({\overline{u}}_1)-\alpha ({\overline{u}}_2). \end{aligned}$$

Clearly, when t is arbitrary in V, the right hand side of the above equality is an arbitrary vector in V. Thus, \(W_1+W_2=V\oplus V\) holds iff the linear map

$$\begin{aligned} (V_1\cap V_2)\times V_2\ni (h,v_2)\longmapsto A(h)-\alpha (h)+v_2\in V \end{aligned}$$

is surjective. Since \(V_2\) has codimension 1 in V, this holds iff the image of the linear map \(V_1\cap V_2\ni h\mapsto A(h)-\alpha (h)\in V\) is not contained in \(V_2\), i.e., iff \({\mathcal {A}}\not \subset V_2\). \(\square \)

1.2 A.2. The case of a 1-parameter family of submanifolds

We will now study a transversality problem between the tangent bundle of a hypersurface \(S_2\), and the union of the normal bundles of a smooth 1-parameter family of hypersurfaces \(S_1(t)\), \(t\in ]-\varepsilon ,\varepsilon [\).

More precisely, let us consider the following setup.

  • \(S_1,S_2\subset M\) are hypersurfaces, and \(p\in S_1\cap S_2\);

  • there exists a nonzero \(v\in {\mathcal {N}}_p(S_1)\cap T_pS_2\). In particular, \(S_1\) and \(S_2\) meet transversally at p.

  • \({\mathbf {n}}\) is a smooth unit vector field along \(S_1\);

  • \(F:]-\varepsilon ,\varepsilon [\times S_1\rightarrow M\) is defined by:

    $$\begin{aligned}F(t,x)=\exp _x\big (t\cdot {\mathbf {n}}(x)\big );\end{aligned}$$
  • \(S_1(t)\) is defined as the image of the map \(F(t,\cdot ):S_1\rightarrow M\).

Under suitable non-focality assumption for p, we can assume that F is an embedding of \(]-\varepsilon ,\varepsilon [\times S_1\) onto an open subset of M. Its image is foliated by the smooth hypersurfaces \(S_1(t)\).

We consider the union:

$$\begin{aligned} \bigcup _{t\in ]-\varepsilon ,\varepsilon [}{\mathcal {N}}\big (S_1(t)\big )\subset TM; \end{aligned}$$

this is a smooth submanifold of TM. Under the above assumptions, \(\frac{\partial F}{\partial t}(t,x)\) is a unit vector normal to \(S_1(t)\) at F(tx), and we have a parameterization of the union \(\bigcup \nolimits _{t\in ]-\varepsilon ,\varepsilon [}{\mathcal {N}}\big (S_1(t)\big )\) given by the smooth map:

$$\begin{aligned} G:]-\varepsilon ,\varepsilon [\times S_1\times {\mathbb {R}}\longrightarrow TM \end{aligned}$$

defined by:

$$\begin{aligned} \qquad G(t,y,\lambda )=\lambda \cdot \frac{\partial F}{\partial t}(t,y),\quad (t,y,\lambda )\in ]-\varepsilon ,\varepsilon [\times S_1\times {\mathbb {R}}. \end{aligned}$$

Our aim is to determine when the map G is transversal in TM to \(TS_2\) at the point \((0,p,\lambda )\), where \(G(0,p,\lambda )=\lambda \cdot {\mathbf {n}}(p)=v\).

Clearly, the image of \({\text {dG}}(0,p,\lambda )\) is given by:

$$\begin{aligned} \text {Im}\big ({\text {dG}}(0,p,\lambda )\big )={\mathbb {R}}\cdot \frac{\partial G}{\partial t}(0,p,\lambda )+T_v\big ({\mathcal {N}}(S_1)\big ). \end{aligned}$$

As we have observed above, if \(T_v\big ({\mathcal {N}}(S_1)\big )+T_v(TS_2)=T_v(TM)\), i.e., if \({\mathcal {A}}_v\not \subset T_pS_2\), then G is transversal to \(TS_2\) at \((0,p,\lambda )\).

On the other hand, if \(T_v\big ({\mathcal {N}}(S_1)\big )+T_v(TS_2)\ne T_v(TM)\), then it is easy to check that \(T_v\big ({\mathcal {N}}(S_1)\big )+T_v(TS_2)\) has codimension 1 in \(T_v(TM)\). This follows immediately from the observation the the projection onto the first factor \(T_v(TM)\cong T_pM\times T_pM\rightarrow T_pM\) induces an isomorphism between the quotient:

$$\begin{aligned} \left( T_v\big ({\mathcal {N}}(S_1)\big )+T_v(TS_1)\right) \big /\left( \{0\}\times T_pS_2\right) \end{aligned}$$

and \(T_pM\).

Thus, G is transversal to \(TS_2\) at \((0,p,\lambda )\) iff

$$\begin{aligned} \frac{\partial G}{\partial t}(0,p,\lambda )\not \in T_v\big ({\mathcal {N}}(S_2)\big )+T_v(TS_1). \end{aligned}$$

Now, \(\frac{\partial G}{\partial t}(0,p,\lambda )=\big ({\mathbf {n}}(p),0\big )\), because the \(t\mapsto \frac{\partial F}{\partial t}(t,p)\) is parallel along the geodesic \(t\mapsto F(t,p)\). Since \(v=\lambda \cdot {\mathbf {n}}(p)\), we conclude that G is transversal to \(TS_2\) at \((0,p,\lambda )\) iff \((v,0)\not \in T_v\big ({\mathcal {N}}(S_1)\big )+T_v(TS_1)\). This happens iff \(\alpha _p^2(v,v)\not \in T_pS_2\), i.e., iff \(\alpha _p^2(v,v)\ne 0\).

In conclusion, we have proved the following:

Proposition A.3

In the above notations, the submanifold

$$\begin{aligned} \bigcup \limits _{t\in ]-\varepsilon ,\varepsilon [}{\mathcal {N}}\big (S_1(t)\big ) \end{aligned}$$

is transversal to \(TS_2\) at v iff either one of the two conditions holds:

  1. (a)

    \({\mathcal {A}}_v\not \subset T_pS_2\);

  2. (b)

    \(\alpha _p^2(v,v)\ne 0\).

\(\square \)

Note that conditions (a) and (b) above are stable by \(C^2\)-small perturbations of the metric g.

Corollary A.4

Let \(N\ge 2\) and let \({\mathbb {D}}^N\) be the N-dimensional unit disk in \({\mathbb {R}}^n\). The set of Riemannian metrics on \({\mathbb {D}}^N\) that admit O–T chords has nonempty interior relatively to the \(C^2\)-topology.

Proof

Given a metric g on \({\mathbb {D}}^N\), an O–T chord in \({\mathbb {D}}^N\) relative to g corresponds to the intersection of the tangent bundle of some open portion \(S_2\) of \(\partial {\mathbb {D}}^N\) and the normal bundle of some other open portion \(S_1\) of \(\partial \mathbb {D}^N\). Evidently, one can easily construct a (smooth) metric g for which such intersection exists, and for which either one of conditions (a) and (b) of Proposition A.3 holds. For instance, condition (b) is rather easy to obtain. In this situation, the transversality implies that sufficiently \(C^2\)-small perturbations of the metric will preserve the existence of some intersection between the normal and the tangent bundle of \(\partial {\mathbb {D}}^N\). This says that O–T chords will persist by sufficiently \(C^2\)-small perturbations of the metric, i.e., the set of metrics in \({\mathbb {D}}^N\) admitting O–T chords has nonempty interior. \(\square \)

It is not hard to see that, in fact, the conclusion of Corollary A.4 holds more generally for arbitrary smooth (compact) manifolds with boundary, whose dimension is greater than or equal to 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giambò, R., Giannoni, F. & Piccione, P. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles. Calc. Var. 57, 117 (2018). https://doi.org/10.1007/s00526-018-1394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1394-y

Mathematics Subject Classification

Navigation