Skip to main content
Log in

Characterizations of monotonicity of vector fields on metric measure spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We characterize the convexity of functions and the monotonicity of vector fields on metric measure spaces with Riemannian Ricci curvature bounded from below. Our result offers a new approach to deal with some rigidity theorems such as “splitting theorem” and “volume cone implies metric cone theorem” in non-smooth context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Colombo, M., Marino, S.D.: Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope. Adv. Stud. Pure Math. Var. Methods Evol. Objects 67, 1–58 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N.: A User’s Guide to Optimal Transport. Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics, vol. 2062. Springer, Heidelberg (2011)

    Google Scholar 

  3. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric measure spaces with \(\sigma \)-finite measure. Trans. Am. Math. Soc. 367(7), 4661–4701 (2015)

    Article  MathSciNet  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  5. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)

    Article  MathSciNet  Google Scholar 

  6. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with riemannian Ricci curvature bounded from below. Duke Math. J. 163, 1405–1490 (2014)

    Article  MathSciNet  Google Scholar 

  7. Ambrosio, L., Gigli, N., Savaré, G.: Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43(1), 339–404 (2015)

    Article  MathSciNet  Google Scholar 

  8. Ambrosio, L., Mondino, A., Savaré, G.: Nonlinear diffusion equations and curvature conditions in metric measure spaces. Preprint arXiv:1509.07273 (2015). To appear on Memoirs of the American Mathematical Society

  9. Ambrosio, L., Mondino, A., Savaré, G.: On the Bakry–Émery condition, the gradient estimates and the local-to-global property of \({{\rm RCD}}^*(k, N)\) metric measure spaces. J. Geom. Anal. 26(1), 24–56 (2016)

    Article  MathSciNet  Google Scholar 

  10. Ambrosio, L., Stra, F., Trevisan, D.: Weak and strong convergence of derivations and stability of flows with respect to MGH convergence. J. Funct. Anal. 272(3), 1182–1229 (2017)

    Article  MathSciNet  Google Scholar 

  11. Ambrosio, L., Trevisan, D.: Well-posedness of Lagrangian flows and continuity equations in metric measure spaces. Anal. PDE 7(5), 1179–1234 (2014)

    Article  MathSciNet  Google Scholar 

  12. Bacher, K., Sturm, K.-T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 259(1), 28–56 (2010)

    Article  MathSciNet  Google Scholar 

  13. Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. (2) 144(1), 189–237 (1996)

    Article  MathSciNet  Google Scholar 

  14. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46(3), 406–480 (1997)

    Article  MathSciNet  Google Scholar 

  15. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. II. J. Differ. Geom. 54(1), 13–35 (2000)

    Article  MathSciNet  Google Scholar 

  16. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. III. J. Differ. Geom. 54(1), 37–74 (2000)

    Article  MathSciNet  Google Scholar 

  17. Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Differ. Geom. 6, 119–128 (1971/1972)

    Article  MathSciNet  Google Scholar 

  18. De Philippis, G., Gigli, N.: From volume cone to metric cone in the nonsmooth setting. Geom. Funct. Anal. 26(6), 1526–1587 (2016)

    Article  MathSciNet  Google Scholar 

  19. Erbar, M.: The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat. 46(1), 1–23 (2010)

    Article  MathSciNet  Google Scholar 

  20. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201(3), 993–1071 (2015)

    Article  MathSciNet  Google Scholar 

  21. Gigli, N.: The splitting theorem in non-smooth context. Preprint arXiv:1302.5555 (2013)

  22. Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Am. Math. Soc. 236(1113), vi+91 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Gigli, N.: Nonsmooth differential geometry—an approach tailored for spaces with Ricci curvature bounded from below. Mem. Am. Math. Soc. 251(1196), v+161 (2018)

    MathSciNet  Google Scholar 

  24. Gigli, N., Han, B.-X.: The continuity equation on metric measure spaces. Calc. Var. Partial Differ. Equ. 53(1–2), 149–177 (2015)

    Article  MathSciNet  Google Scholar 

  25. Gigli, N., Han, B.-X.: Sobolev spaces on warped products. J. Funct. Anal. (2018). https://doi.org/10.1016/j.jfa.2018.03.021

    Article  MathSciNet  Google Scholar 

  26. Gigli, N., Ketterer, C., Kuwada, K., Ohta, S.-I.: Rigidity for the spectral gap on \(RCD(K, \infty )\)-spaces. Preprint arXiv:1709.04017 (2017)

  27. Gigli, N., Pasqualetto, E.: Behaviour of the reference measure on \(RCD\) spaces under charts. Preprint arXiv:1607.05188 (2016)

  28. Gigli, N., Rigoni, C.: Recognizing the flat torus among \(RCD^*(0,N)\) spaces via the study of the first cohomology group. Preprint arXiv:1705.04466 (2017)

  29. Gigli, N., Tamanini, L.: Second order differentiation formula on compact \(RCD^*(K,N)\) spaces. Preprint arXiv:1701.03932 (2017)

  30. Han, B.-X.: Ricci tensor on \({RCD}^*(K, N)\) spaces. J. Geom. Anal. 28(2), 1295–1314 (2018)

    Article  MathSciNet  Google Scholar 

  31. Kell, M., Mondino, A.: On the volume measure of non-smooth spaces with Ricci curvature bounded below. Ann. Sc. Norm. Super. Pisa Cl. Sci. XVIII(5), 593–610 (2018)

  32. Ketterer, C.: Obata’s rigidity theorem for metric measure spaces. Anal. Geom. Metr. Spaces 3, 278–295 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Kuwada, K.: Duality on gradient estimates and Wasserstein controls. J. Funct. Anal. 258(11), 3758–3774 (2010)

    Article  MathSciNet  Google Scholar 

  34. Lierl, J., Sturm, K.-T.: Neumann heat flow and gradient flow for the entropy on non-convex domains. Calc. Var. Partial Differ. Equ. 57(1), 25 (2018)

    Article  MathSciNet  Google Scholar 

  35. Lisini, S.: Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Partial Differ. Equ. 28(1), 85–120 (2007)

    Article  MathSciNet  Google Scholar 

  36. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    Article  MathSciNet  Google Scholar 

  37. Mondino, A., Naber, A.: Structure theory of metric-measure spaces with lower Ricci curvature bounds I. Preprint arXiv:1405.222 (2014)

  38. Rajala, T., Sturm, K.-T.: Non-branching geodesics and optimal maps in strong \(CD(K,\infty )\)-spaces. Calc. Var. Partial Differ. Equ. 50(3–4), 831–846 (2014)

    Article  MathSciNet  Google Scholar 

  39. Savaré, G.: Self-improvement of the Bakry–émery condition and Wasserstein contraction of the heat flow in \({RCD(K, \infty )}\) metric measure spaces. Disc. Cont. Dyn. Sist. A 34, 1641–1661 (2014)

    Article  Google Scholar 

  40. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16(2), 243–279 (2000)

    Article  MathSciNet  Google Scholar 

  41. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  Google Scholar 

  42. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006)

    Article  MathSciNet  Google Scholar 

  43. Sturm, K.-T.: Gradient flows for semiconvex functions on metric measure spaces—existence, uniqueness and Lipschitz continuity. Preprint arXiv:1410.3966 (2014)

  44. Villani, C.: Optimal Transport. Old and New, Vol. 338 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2009)

    Google Scholar 

  45. von Renesse, M.-K., Sturm, K.-T.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-Xian Han.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, BX. Characterizations of monotonicity of vector fields on metric measure spaces. Calc. Var. 57, 113 (2018). https://doi.org/10.1007/s00526-018-1388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1388-9

Mathematics Subject Classification

Navigation