Skip to main content
Log in

Uniqueness and symmetry of ground states for higher-order equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish uniqueness and radial symmetry of ground states for higher-order nonlinear Schrödinger and Hartree equations whose higher-order differentials have small coefficients. As an application, we obtain error estimates for higher-order approximations to the pseudo-relativistic ground state. Our proof adapts the strategy of Lenzmann (Anal PDE 2:1–27, 2009) using local uniqueness near the limit of ground states in a variational problem. However, in order to bypass difficulties from lack of symmetrization tools for higher-order differential operators, we employ the contraction mapping argument in our earlier work (Choi et al. 2017. arXiv:1705.09068) to construct radially symmetric real-valued solutions, as well as improving local uniqueness near the limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. With \(\omega (0)=\nabla _{\xi _j} \omega (0)=0\) and \(\partial _{\xi _j}\partial _{\xi _k}\omega (0)=\delta _{jk}\) by a suitable change of variables.

  2. We say that Q is a unique solution up to translation and phase shift if for any solution u, there exist \(x_0\in {\mathbb {R}}^d\) and \(\theta \in {\mathbb {R}}\) such that \(u(x)=e^{i\theta }Q(x-x_0)\).

References

  1. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82(4), 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Choi, W., Hong, Y., Seok, J.: Optimal convergence rate of nonrelativistic limit for the nonlinear pseudo-relativistic equations. J. Funct. Anal. 274(3), 695–722 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choi, W., Hong, Y., Seok, J.: On critical and supercritical pseudo-relativistic nonlinear Schrödinger equations, To appear in Proc. Roy. Soc. Edinburgh Sect. A.

  4. Carles, R., Moulay, E.: Higher order Schrödinger equations. J. Phys. A 45(39), 395304, 11 (2012)

    Article  MATH  Google Scholar 

  5. Carles, R., Lucha, W., Moulay, E.: Higher-order Schrödinger and Hartree–Fock equations. J. Math. Phys. 56(12), 122301, 17 (2015)

    Article  MATH  Google Scholar 

  6. Daubechies, I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys. 90, 511–520 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gazzola, F., Grunau, H., Sweers, G.: Polyharmonic Boundary Value Problems. Lecture Notes in Mathematics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  8. Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 edition. Classics in Mathematics, p. xiv+517. Springer, Berlin (2001)

    MATH  Google Scholar 

  10. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u - u + u^p =0\) in \({{\mathbb{R}}}^n\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  MATH  Google Scholar 

  11. Lenzmann, E.: Uniqueness of a ground state for pseudo-relativistic Hartree equations. Anal. PDE 2, 1–27 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lieb, E. H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1976/77)

  13. Lieb, E., Yau, H.T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112(1), 147–174 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I., Ann. Inst. H. Poincar Anal. Non Linéaire 1(2), 109–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139. Springer, New York (1999)

    MATH  Google Scholar 

  16. Weinstein, M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research of the first author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2017R1C1B5076348). This research of the second author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2017R1C1B1008215). This research of the third author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000768).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghun Hong.

Additional information

Communicated by P. Rabinowitz.

Appendices

Appendix A: Nonlinear estimates

We show the nonlinear estimates which are used in the contraction mapping argument.

Lemma A.1

(Nonlinear estimates) Let \(u\in H^1\) be real-valued. For any \(\eta >0\), there exists \(\delta _0>0\), depending on \(\Vert u\Vert _{H^1({\mathbb {R}}^d;{\mathbb {R}})}\) and \(\eta \), such that if \(0<\delta \le \delta _0\) and

$$\begin{aligned} \Vert r\Vert _{H^1({\mathbb {R}}^d;{\mathbb {R}})}, \Vert \tilde{r}\Vert _{H^1({\mathbb {R}}^d;{\mathbb {R}})}\le \delta , \end{aligned}$$

then

$$\begin{aligned} \left\| {\mathcal {N}}'(u+r)-{\mathcal {N}}'(u)-{\mathcal {N}}_{u}^+(r)\right\| _{L^2({\mathbb {R}}^d;{\mathbb {R}})}\le \eta \Vert r\Vert _{H^1({\mathbb {R}}^d;{\mathbb {R}})} \end{aligned}$$

and

$$\begin{aligned} \left\| \left( {\mathcal {N}}'(u+r)-{\mathcal {N}}'(u)-{\mathcal {N}}_{u}^+(r)\right) -\left( {\mathcal {N}}'(u+\tilde{r})-{\mathcal {N}}'(u)-{\mathcal {N}}_{u}^+(\tilde{r})\right) \right\| _{L^2({\mathbb {R}}^d;{\mathbb {R}})}\le \eta \Vert r-\tilde{r}\Vert _{H^1({\mathbb {R}}^d;{\mathbb {R}})}. \end{aligned}$$

The above lemma follows from the multilinear estimates.

Lemma A.2

(Multilinear estimates) We have

$$\begin{aligned} \left\| \left( \frac{1}{|x|}*(\phi _1\phi _2)\right) \phi _3\right\| _{L^2({\mathbb {R}}^3;{\mathbb {R}})}\lesssim \prod _{j=1}^3\Vert \phi _j\Vert _{H^1({\mathbb {R}}^3;{\mathbb {R}})}. \end{aligned}$$

Moreover, if \(d=1,2\) and \(k\in {\mathbb {N}}\) or if \(d=3\) and \(k=1\), then

$$\begin{aligned} \left\| \prod _{j=1}^{2k+1}\phi _j\right\| _{L^2({\mathbb {R}}^d;{\mathbb {R}})}\lesssim \prod _{j=1}^{2k+1}\Vert \phi _j\Vert _{H^1({\mathbb {R}}^d;{\mathbb {R}})}. \end{aligned}$$

Proof

By the Hölder, Young’s and Sobolev inequalities, we prove that

$$\begin{aligned} \left\| \left( \frac{1}{|x|}*(\phi _1\phi _2)\right) \phi _3\right\| _{L^2({\mathbb {R}}^3;{\mathbb {R}})}&\le \left\| \left( \frac{1}{|x|}*(\phi _1\phi _2)\right) \right\| _{L^9({\mathbb {R}}^3;{\mathbb {R}})}\Vert \phi _3\Vert _{L^{18/7}({\mathbb {R}}^3;{\mathbb {R}})}\\&\lesssim \Vert \phi _1\phi _2\Vert _{L^{9/7}({\mathbb {R}}^3;{\mathbb {R}})}\Vert \phi _3\Vert _{L^{18/7}({\mathbb {R}}^3;{\mathbb {R}})}\\&\lesssim \prod _{j=1}^3\Vert \phi _j\Vert _{L^{18/7}({\mathbb {R}}^3;{\mathbb {R}})}\lesssim \prod _{j=1}^3\Vert \phi _j\Vert _{H^1({\mathbb {R}}^3;{\mathbb {R}})} \end{aligned}$$

and similarly,

$$\begin{aligned} \left\| \prod _{j=1}^{2k+1}\phi _j\right\| _{L^2({\mathbb {R}}^d;{\mathbb {R}})}\le \prod _{j=1}^{2k+1}\Vert \phi _j\Vert _{L^{2(2k+1)}({\mathbb {R}}^d;{\mathbb {R}})}\lesssim \prod _{j=1}^{2k+1}\Vert \phi _j\Vert _{H^1({\mathbb {R}}^d;{\mathbb {R}})}. \end{aligned}$$

Proof of Lemma A.1

Suppose that \(\Vert r\Vert _{H^1},\Vert \tilde{r}\Vert _{H^1}\le \Vert u\Vert _{H^1}\). For the Hartree nonlinearity, by algebra, we write

$$\begin{aligned} {\mathcal {N}}'(u+r)-{\mathcal {N}}'(u)-{\mathcal {N}}_{u}^+(r)=\left( \frac{1}{|x|}*r^2\right) u+2\left( \frac{1}{|x|}*(ur)\right) r+\left( \frac{1}{|x|}*r^2\right) r \end{aligned}$$

and

$$\begin{aligned}&\left( {\mathcal {N}}'(u+r)-{\mathcal {N}}'(u)-{\mathcal {N}}_{u}^+(r)\right) -\left( {\mathcal {N}}'(u+\tilde{r})-{\mathcal {N}}'(u)-{\mathcal {N}}_{u}^+(\tilde{r})\right) \\&\quad =\left( \frac{1}{|x|}*\left( (r+\tilde{r})(r-\tilde{r})\right) \right) u+2\left( \frac{1}{|x|}*\left( u(r-\tilde{r})\right) \right) r+2\left( \frac{1}{|x|}*(u\tilde{r})\right) (r-\tilde{r})\\&\quad +\left( \frac{1}{|x|}*\left( (r+\tilde{r})(r-\tilde{r})\right) \right) r+\left( \frac{1}{|x|}*\tilde{r}^2\right) (r-\tilde{r}) \end{aligned}$$

Thus, by the multilinear estimate (Lemma A.2),

$$\begin{aligned} \left\| {\mathcal {N}}'(u+r)-{\mathcal {N}}'(u)-{\mathcal {N}}_{u}^+(r)\right\| _{L^2}\le C\Big (\Vert u\Vert _{H^1}+\Vert r\Vert _{H^1}\Big )\Vert r\Vert _{H^1}^2\le 2C\delta \Vert u\Vert _{H^1}\Vert r\Vert _{H^1} \end{aligned}$$

and

$$\begin{aligned}&\left\| \left( {\mathcal {N}}'(u+r)-{\mathcal {N}}'(u)-{\mathcal {N}}_{u}^+(r)\right) -\left( {\mathcal {N}}'(u+\tilde{r})-{\mathcal {N}}'(u)-{\mathcal {N}}_{u}^+(\tilde{r})\right) \right\| _{L^2}\\&\quad \le C\Big (\Vert u\Vert _{H^1}+\Vert r\Vert _{H^1}+\Vert \tilde{r}\Vert _{H^1}\Big )\Big (\Vert r\Vert _{H^1}+\Vert \tilde{r}\Vert _{H^1}\Big )\Vert r-\tilde{r}\Vert _{H^1}\\&\quad \le 6C\delta \Vert u\Vert _{H^1}\Vert r-\tilde{r}\Vert _{H^1}. \end{aligned}$$

Then, taking \(\delta _0=\eta \min \{\frac{1}{6C\Vert u\Vert _{H^1}},\Vert u\Vert _{H^1}\}\), we prove the lemma for the Hartree nonlinearity.

Similarly, for the polynomial nonlinearity, by the multilinear estimate (Lemma A.2),

$$\begin{aligned} \left\| {\mathcal {N}}'(u+r)-{\mathcal {N}}'(u)-{\mathcal {N}}_{u}^+(r)\right\| _{L^2}&=\left\| \sum _{j=2}^{2k+1} \begin{pmatrix} 2k+1 \\ j \\ \end{pmatrix} u^{2k+1-j} r^j\right\| _{L^2}\\&\le \sum _{j=2}^{2k+1} \begin{pmatrix} 2k+1 \\ j \\ \end{pmatrix} \left\| u^{2k+1-j} r^j\right\| _{L^2}\\&\le C\sum _{j=2}^{2k+1} \begin{pmatrix} 2k+1 \\ j \\ \end{pmatrix} \Vert u\Vert _{H^1}^{2k+1-j} \Vert r\Vert _{H^1}^j\\&\le C_k\delta \Vert u\Vert _{H^1}^{2k-1}\Vert r\Vert _{H^1} \end{aligned}$$

and

$$\begin{aligned}&\left\| \left( {\mathcal {N}}'(u+r)-{\mathcal {N}}'(u)-{\mathcal {N}}_{u}^+(r)\right) -\left( {\mathcal {N}}'(u+\tilde{r})-{\mathcal {N}}'(u)-{\mathcal {N}}_{u}^+(\tilde{r})\right) \right\| _{L^2}\\&\quad =\left\| \sum _{j=3}^{2k+1} \begin{pmatrix} 2k+1 \\ j \\ \end{pmatrix} u^{2k+1-j} (r-\tilde{r})(r^{j-1}+r^{j-2}\tilde{r}+\cdots +\tilde{r}^{j-1})\right\| _{L^2}\\&\quad \le \sum _{j=3}^{2k+1} \begin{pmatrix} 2k+1 \\ j \\ \end{pmatrix} \left\| u^{2k+1-j} (r-\tilde{r})(r^{j-1}+r^{j-2}\tilde{r}+\cdots +\tilde{r}^{j-1})\right\| _{L^2}\\&\quad \le C\sum _{j=3}^{2k+1} \begin{pmatrix} 2k+1 \\ j \\ \end{pmatrix} \Vert u\Vert _{H^1}^{2k+1-j} \Vert r-\tilde{r}\Vert _{H^1}\left( \Vert r\Vert _{H^1}^{j-1}+\Vert r\Vert _{H^1}^{j-2}\Vert \tilde{r}\Vert _{H^1}+\cdots +\Vert \tilde{r}\Vert _{H^1}^{j-1}\right) \\&\quad \le C_k\delta \Vert u\Vert _{H^1}^{2k-1}\Vert r-\tilde{r}\Vert _{H^1} \end{aligned}$$

for some constant \(C_k>0\). Then, taking \(\delta _0=\eta \min \{\frac{1}{2C_k\Vert u\Vert _{H^1}^{2k-1}},\Vert u\Vert _{H^1}\}\), we complete the proof of the lemma for the polynomial nonlinearity. \(\square \)

Appendix B: Uniform lower bound for higher-order operators in (1.3)

Lemma B.1

(Uniform lower bound for higher-order operators in (1.3)) For any \(\xi \in {\mathbb {R}}^3\), we have

$$\begin{aligned} \sum _{j=1}^{2k-1}\frac{(-1)^{j-1}\alpha _j}{m^{2j-1}c^{2j-2}}|\xi |^{2j}\ge \frac{|\xi |^2}{2m}, \end{aligned}$$

where \(a_j=\frac{(2j-2)!}{j!(j-1)! 2^{2j-1}}\).

Proof

By change of variables \(\frac{\xi }{m}\mapsto \xi \), it suffices to prove the lemma assuming \(m=1\). The inequality is trivial when \(k=1\). Suppose that \(k\ge 2\). Splitting the positive and the negative terms and then applying the Cauchy–Schwarz inequality for the negative terms, we obtain

$$\begin{aligned} \sum _{j=1}^{2k-1}\frac{(-1)^{j-1}\alpha _j}{c^{2j-2}}|\xi |^{2j}&=\sum _{j=1}^k\frac{\alpha _{2j-1}}{c^{4j-4}}|\xi |^{4j-2}-\sum _{j=1}^{k-1}\frac{\alpha _{2j}}{c^{4j-2}}|\xi |^{4j}\\&\ge \sum _{j=1}^k\frac{\alpha _{2j-1}}{c^{4j-4}}|\xi |^{4j-2}\\&-\frac{1}{2}\sum _{j=1}^{k-1} \left\{ \frac{(\alpha _{2j})^2}{\alpha _{2j-1}\alpha _{2j+1}}\frac{\alpha _{2j-1}}{c^{4j-4}}|\xi |^{4j-2}+\frac{\alpha _{2j+1}}{c^{4j}}|\xi |^{4j+2}\right\} . \end{aligned}$$

Since \(\frac{(\alpha _{2j})^2}{\alpha _{2j-1}\alpha _{2j+1}}=\cdots =\frac{(4j-3)(2j+1)}{(4j-1)2j}\le 1\) for all \(j\ge 1\), it is bounded below from

$$\begin{aligned}&\sum _{j=1}^k\frac{\alpha _{2j-1}}{c^{4j-4}}|\xi |^{4j-2}-\frac{1}{2}\sum _{j=1}^{k-1} \left\{ \frac{\alpha _{2j-1}}{c^{4j-4}}|\xi |^{4j-2}+\frac{\alpha _{2j+1}}{c^{4j}}|\xi |^{4j+2}\right\} \\&\quad = \sum _{j=1}^k\frac{\alpha _{2j-1}}{c^{4j-4}}|\xi |^{4j-2}-\frac{1}{2}\sum _{j=1}^{k-1}\frac{\alpha _{2j-1}}{c^{4j-4}}|\xi |^{4j-2}-\frac{1}{2}\sum _{j=2}^k\frac{\alpha _{2j-1}}{c^{4j-4}}|\xi |^{4j-2}\\&\quad =\frac{1}{2}|\xi |^2+\frac{\alpha _{2k-1}}{2c^{4k-4}}|\xi |^{4k-2}\ge \frac{1}{2}|\xi |^2. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, W., Hong, Y. & Seok, J. Uniqueness and symmetry of ground states for higher-order equations. Calc. Var. 57, 77 (2018). https://doi.org/10.1007/s00526-018-1362-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1362-6

Mathematics Subject Classification

Navigation