Skip to main content
Log in

On nonlinear cross-diffusion systems: an optimal transport approach

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study a nonlinear, degenerate cross-diffusion model which involves two densities with two different drift velocities. A general framework is introduced based on its gradient flow structure in Wasserstein space to derive a notion of discrete-time solutions. Its continuum limit, due to the possible mixing of the densities, only solves a weaker version of the original system. In one space dimension, we find a stable initial configuration which allows the densities to be segregated. This leads to the evolution of a stable interface between the two densities, and to a stronger convergence result to the continuum limit. In particular derivation of a standard weak solution to the system is available. We also study the incompressible limit of the system, which addresses transport under a height constraint on the total density. In one space dimension we show that the problem leads to a two-phase Hele-Shaw type flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. See the Appendix on optimal transportation.

References

  1. Alexander, D., Kim, I., Yao, Y.: Quasi-static evolution and congested crowd transport. Nonlinearity 27(4), 823–858 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L.: Movimenti minimizzanti. Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Nat. 113, 191–246 (1995)

    Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  4. Aubin, J.-P.: Un théorème de compacité, (French). C. R. Acad. Sci. Paris 256, 5042–5044 (1963)

    MathSciNet  MATH  Google Scholar 

  5. Berendsen, J., Burger, M., Pietschmann, J.-F.: On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion. Nonlinear Anal. 159, 10–39 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertsch, M., Gurtin, M.E., Hilhorst, D., Peletier, L.A.: On interacting populations that disperse to avoid crowding: preservation of segregation. J. Math. Biol. 23(1), 1–13 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsch, M., Gurtin, M.E., Hilhorst, D.: On interacting populations that disperse to avoid crowding: the case of equal dispersal velocities. Nonlinear Anal. 11(4), 493–499 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burger, M., Di Francesco, M., Pietschmann, J.-F., Schlake, B.: Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42(6), 2842–2871 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burger, M., Di Francesco, M., Fagioli, S., Stevens, A.: Sorting phenomena in a mathematical model for two mutually attracting/repelling species, preprint (2017). https://arxiv.org/abs/1704.04179

  10. Bruna, M., Burger, M., Ranetbauer, H., Wolfram, M.-T.: Cross-diffusion systems with excluded-volume effects and asymptotic gradient flow structures. J. Nonlinear Sci. 27, 687–719 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buttazzo, G., Santambrogio, F.: A model for the optimal planning of an urban area. SIAM J. Math. Anal. 37(2), 514–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cancès, C., Gallouët, T., Monsaingeon, L.: The gradient flow structure for incompressible immiscible two-phase flows in porous media. C. R. Math. Acad. Sci. Paris 353(11), 985–989 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cancès, C., Gallouët, T., Monsaingeon, L.: Incompressible immiscible multiphase flows in porous media: a variational approach. Anal. PDE. 10(8), 1845–1876 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carlier, G., Laborde, M.: Remarks on continuity equations with nonlinear diffusion and nonlocal drifts. J. Math. Anal. Appl. 444(2), 1690–1702 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carlier, G., Laborde, M.: A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts. Nonlinear Anal. 150, 1–18 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dambrine, J., Meunier, N., Maury, B., Roudneff-Chupin, A.: A congestion model for cell migration. Commun. Pure Appl. Anal. 11(1), 243–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. De Philippis, G., Figalli, A.: The Monge–Ampre equation and its link to optimal transportation. Bull. Am. Math. Soc. (N.S.) 51(4), 527–580 (2014)

    Article  MATH  Google Scholar 

  18. Di Francesco, M., Fagioli, S.: Measure solutions for non-local interaction PDEs with two species. Nonlinearity 26(10), 2777–2808 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Di Francesco, M., Matthes, D.: Curves of steepest descent are entropy solutions for a class of degenerate convection–diffusion equations. Calc. Var. Partial Differ. Equ. 50(1–2), 199–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Escher, J., Laurençot, Ph, Matioc, B.-V.: Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media. Ann. Inst. H. Poincar Anal. Non Linéaire 28(4), 583–598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jüngel, A., Zamponi, N.: A cross-diffusion system derived from a Fokker–Planck equation with partial averaging. Z. Angew. Math. Phys. 68(1), 15 (2017). Art. 28

    Article  MathSciNet  MATH  Google Scholar 

  23. Kim, I.C.: Uniqueness and existence results on the Hele-Shaw and the Stefan problems. Arch. Ration. Mech. Anal. 168(4), 299–328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kim, I., Pozar, N.: Porous medium equation to Hele-Shaw flow with general initial density. Trans. Amer. Math. Soc. 370(2), 873–909 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Laborde, M.: Systèmes de particules en interaction, approche par flot de gradient dans l’espace de Wasserstein. Ph.D. Thesis, Université Paris-Dauphine (2016)

  26. Laborde, M.: On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows. In: Bergounioux, M., Oudet, É., Rumpf, M., Carlier, G., Champion, T., Santambrogio, F. (eds.) Topological Optimization and Optimal Transport. Radon Series on Computational and Applied Mathematics, pp. 304–332. De Gruyter, Berlin (2017).

  27. Laurençot, Ph, Matioc, B.-V.: A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Partial Differ. Equ. 47(1–2), 319–341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lorenzi, T., Lorz, A., Perthame, B.: On interfaces between cell populations with different mobilities. Kinet. Relat. Models 10(1), 299–311 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Matthes, D., McCann, R., Savaré, G.: A family of nonlinear fourth order equations of gradient flow type. Commun. PDE 34(10–12), 1352–1397 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Maury, B., Roudneff-Chupin, A., Santambrogio, F.: A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci. 20(10), 1787–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Maury, B., Roudneff-Chupin, A., Santambrogio, F.: Congestion-driven dendritic growth. Discrete Contin. Dyn. Syst. 34(4), 1575–1604 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Maury, B., Roudneff-Chupin, A., Santambrogio, F., Venel, J.: Handling congestion in crowd motion modeling. Netw. Heterog. Media 6(3), 485–519 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maury, B., Venel, J.: Handling of Contacts in Crowd Motion Simulations. Traffic and Granular Flow. Springer, Berlin (2007)

    MATH  Google Scholar 

  34. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mellet, A., Perthame, B., Quirós, F.: A Hele-Shaw problem for tumor growth, preprint. J. Funct. Anal. 273(10), 3061–3093 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mészáros, A.R., Santambrogio, F.: Advection–diffusion equations with density constraints. Anal. PDE 9(3), 615–644 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. PDE 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Otto, F.: Evolution of microstructure in unstable porous media flow: a relaxational approach. Commun. Pure Appl. Math 52, 873–915 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Perthame, B., Quirós, F., Vázquez, J.L.: The Hele-Shaw asymptotics for mechanical models of tumor growth. Arch. Ration. Mech. Anal. 212, 93–127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rossi, R., Savaré, G.: Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2(2), 395–431 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Commun. Pure Appl. Math. 57(12), 1627–1672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Santambrogio, F.: \(\{\)Euclidean, metric, and Wasserstein\(\}\) gradient flows: an overview. Bull. Math. Sci. 7, 87–154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Santambrogio, F.: Optimal Transport for Applied Mathematicians. Birkäuser, Basel (2015)

    Book  MATH  Google Scholar 

  44. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics. AMS, Providence (2003)

    MATH  Google Scholar 

  45. Zamponi, N., Jüngel, A.: Analysis of degenerate cross-diffusion population models with volume filling. Ann. Inst. H. Poincar Anal. Non Linéaire 34(1), 1–29 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to G. Carlier, D. Matthes, F. Santambrogio and Y. Yao for many valuable discussions at different stages of the preparation of this paper. The authors warmly thank the referee for his/her constructive comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpár Richárd Mészáros.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by L. Ambrosio.

Inwon Kim is supported by the NSF Grant DMS-1566578.

Appendices

Appendix A: Optimal transport toolbox

Lemma A.1

Let \(f:[0,+\,\infty )\rightarrow {\mathbb {R}}\) be a \(C^1\) convex function that is superlinear at \(+\,\infty .\) Let \(M>0.\) We consider \({\mathcal {F}}:{\mathscr {P}}^M(\Omega )\rightarrow {\mathbb {R}}\cup {+\,\infty }\) defined as

$$\begin{aligned} {\mathcal {F}}(\rho )=\left\{ \begin{array}{ll} \displaystyle \int _\Omega f(\rho (x))\mathrm{d}x, &{}\quad {\mathrm{if}}\ \rho \ll \mathscr {L}^d,\\ +\,\infty , &{}\quad {\mathrm{otherwise}}. \end{array}\right. \end{aligned}$$

Let \(\nu \in {\mathscr {P}}^{M}(\Omega )\) be given. Then there exists a solution \(\varrho \in {\mathscr {P}}^{{\mathrm{ac}},M}(\Omega )\) of the minimization problem

$$\begin{aligned} \min _{\rho \in {\mathscr {P}}^M(\Omega )}\left\{ {\mathcal {F}}(\rho )+\frac{1}{2} W_2^2(\rho ,\nu )\right\} . \end{aligned}$$

If in addition \(\nu \ll \mathscr {L}^d\) or if f is strictly convex, then \(\varrho \) is unique.

Moreover, \(\exists C\in {\mathbb {R}}\) such that for a suitable Kantorovich potential \(\varphi \) in the optimal transport of \(\varrho \) onto \(\nu \) one has the following first order necessary optimality condition fulfilled

$$\begin{aligned} \left\{ \begin{array}{ll} f'(\varrho )+\varphi =C, &{}\quad \varrho -{\mathrm{a.e.}},\\ f'(\varrho )+\varphi \ge C, &{}\quad {\mathrm{on}}\ \{\varrho =0\}. \end{array}\right. \end{aligned}$$
(A.1)

If \(f'(0)\) is finite, then one can express the above condition as \(f'(\varrho )=\max \{C-\varphi , f'(0)\}.\)

Proof

The proof of the previous results can be found in [11] or [43, Chapter 7]. \(\square \)

It turns out that \(({\mathscr {P}}^M(\Omega ),W_2)\) is a geodesic space and constant speed geodesics (and absolutely continuous curves in general) can be characterized by special solutions of continuity equations. Since this characterization is true for any \(M>0,\) we simply set \(M=1\) in the theorem below.

Theorem A.2

(see [3, 43])

  1. 1.

    Let \(\Omega \subset {\mathbb {R}}^d\) compact and \((\mu _t)_{t\in [0,T]}\) be an absolutely continuous curve in \(({\mathscr {P}}(\Omega ),W_2).\) Then for a.e. \(t\in [0,T]\) there exists a vector field \(\mathbf{v }_t\in L^2_{\mu _t}(\Omega ;{\mathbb {R}}^d)\) s.t.

    • the continuity equation \(\partial _t\mu _t+\nabla \cdot (\mathbf{v }_t\mu _t)=0\) is satisfied in the weak sense;

    • for a.e. \(t\in [0,T],\) one has \(\Vert v_t\Vert _{L^2_{\mu _t}}\le |\mu '|_{W_2}(t),\) where

      $$\begin{aligned} |\mu '|_{W_2}(t):=\lim _{h\rightarrow 0}\frac{W_2(\mu _{t+h},\mu _t)}{|h|} \end{aligned}$$

      denotes the metric derivative of the curve \([0,T]\ni t\mapsto \mu _t\) w.r.t. \(W_2,\) provided the limit exists.

  2. 2.

    Conversely, if \((\mu _t)_{t\in [0,T]}\) is a family of measures in \({\mathscr {P}}(\Omega )\) and for each t one has a vector field \(\mathbf{v }_t\in L^2_{\mu _t}(\Omega ;{\mathbb {R}}^d)\) s.t. \(\int _0^T\Vert \mathbf{v }_t\Vert _{L^2_{\mu _t}}\mathrm{d}t<+\,\infty \) and \(\partial _t\mu _t+\nabla \cdot (\mathbf{v }_t\mu _t)=0\) in the weak sense, then \([0,T]\ni t\mapsto \mu _t\) is an absolutely continuous curve in \(({\mathscr {P}}(\Omega ),W_2)\), with \(|\mu '|_{W_2}(t)\le \Vert v_t\Vert _{L^2_{\mu _t}}\) for a.e. \(t\in [0,T]\) and \(W_2(\mu _{t_1},\mu _{t_2})\le \int _{t_1}^{t_2} |\mu '|_{W_2}(t)\mathrm{d}t.\) If moreover \(|\mu '|\in L^2(0,T)\), then we say that \(\mu \) belongs to the space \(AC^2([0,T];({\mathscr {P}}(\Omega ), W_2)).\)

  3. 3.

    For curves \((\mu _t)_{t\in [0,1]}\) that are geodesics in \(({\mathscr {P}}(\Omega ),W_2)\) one has the equality

    $$\begin{aligned} W_2(\mu _0,\mu _1)=\int _0^1 |\mu '|_{W_2}(t)\mathrm{d}t=\int _0^1 \Vert v_t\Vert _{L^2_{\mu _t}}\mathrm{d}t. \end{aligned}$$
  4. 4.

    For \(\mu _0,\mu _1\in {\mathscr {P}}^{{\mathrm{ac}}}(\Omega )\), a constant speed geodesic connecting them is a curve \((\mu _t)_{t\in [0,1]}\) such that \(W_2(\mu _s,\mu _t)=|t-s|W_2(\mu _0,\mu _1)\) for any \(t,s\in [0,1].\) One can compute this constant speed geodesic using McCann’s interpolation, i.e. \(\mu _t:=\left( T_t\right) _\#\mu _0,\) for all \(t\in [0,1]\), where \(T_t:=(1-t)\mathrm{id}+tT\) with \(T_\#\mu _0=\mu _1\) the optimal transport map between \(\mu _0\) and \(\mu _1\). Moreover, the velocity field in the continuity equation is given by \(\mathbf{v }_t:=(T-\mathrm{id})\circ (T_t)^{-1}.\)

Let us introduce the Benamou-Brenier functional \({\mathcal {B}}_2:{\mathscr {M}}([0,T]\times \Omega )\times {\mathscr {M}}^d([0,T]\times \Omega )\rightarrow {\mathbb {R}}\cup \{+\,\infty \}\) defined as

$$\begin{aligned} {\mathcal {B}}_2(\mu , \mathbf{E }):=\left\{ \begin{array}{ll} \displaystyle \int _0^T\int _\Omega |\mathbf{v }_t|^2\mathrm{d}\mu _t(x)\mathrm{d}t, &{}\quad \text {if}\ \mathbf{E }=\mathbf{E }_t\otimes \mathrm{d}t, \mu =\mu _t\otimes \mathrm{d}t \ \text {and}\ \mathbf{E }_t=\mathbf{v }_t\cdot \mu _t,\\ \displaystyle +\,\infty , &{}\quad \text {otherwise}. \end{array} \right. \end{aligned}$$

It is well-known (see for instance [43, Proposition 5.18]) that \({\mathcal {B}}_2\) is jointly convex and lower semicontinuous w.r.t. the weak\(-\star \) convergence. In particular if \((\mu ,\mathbf{E })\) solves \(\partial _t\mu +\nabla \cdot \mathbf{E }=0\) in the weak sense with \({\mathcal {B}}_2(\mu ,\mathbf{E })<+\,\infty ,\) implies that \(t\mapsto \mu _t\) is a curve in \(AC^2([0,T];({\mathscr {P}}(\Omega ), W_2)).\)

The following comparison result appears to be well-known but we write it here for completeness.

Lemma A.3

Let \(\mu ^1,\nu ^1\in {\mathscr {P}}^{M_1}(\Omega )\) and \(\mu ^2,\nu ^2\in {\mathscr {P}}^{M_2}(\Omega ).\) Then the following inequality holds true

$$\begin{aligned} W_2^2(\mu ^1+\mu ^2,\nu ^1+\nu ^2)\le W_2^2(\mu ^1,\nu ^1) + W_2^2(\mu ^2,\nu ^2). \end{aligned}$$
(A.2)

Remark A.1

Note that with the abuse of notation, \(W_2\) on the l.h.s. of (A.2) denotes the \(2-\)Wasserstein distance on \({\mathscr {P}}^{M_1+M_2}(\Omega ),\) while on the r.h.s. \(W_2\) denotes the corresponding distances on \({\mathscr {P}}^{M_1}(\Omega )\) and \({\mathscr {P}}^{M_2}(\Omega )\) respectively.

Proof of Lemma A.3

The quantity on the l.h.s. of (A.2) is realized by an optimal plan \(\gamma \in \Pi ^{M_1+M_2}(\mu ^1+\mu ^2,\nu ^1+\nu ^2)\) i.e.

$$\begin{aligned} W_2^2(\mu ^1+\mu ^2,\nu ^1+\nu ^2)=\int _{\Omega \times \Omega }|x-y|^2\mathrm{d}\gamma . \end{aligned}$$

Similarly the quantities on the r.h.s. can be written with the help of some optimal plans \(\gamma ^i\in \Pi ^{M_i}(\mu ^i,\nu ^i),\) \(i=1,2,\) i.e.

$$\begin{aligned} W_2^2(\mu ^i,\nu ^i)=\int _{\Omega \times \Omega }|x-y|^2\mathrm{d}\gamma ^i. \end{aligned}$$

Now set \({\tilde{\gamma }}:=\gamma ^1+\gamma ^2\). Clearly since \((\pi ^x)_\#{\tilde{\gamma }}=\mu ^1+\nu ^1\) and \((\pi ^y)_\#{\tilde{\gamma }}=\mu ^2+\nu ^2\) one has \({\tilde{\gamma }}\in \Pi ^{M_1+M_2}(\mu ^1+\mu ^2,\nu ^1+\nu ^2)\). Hence

$$\begin{aligned} W_2^2(\mu ^1+\mu ^2,\nu ^1+\nu ^2)&=\int _{\Omega \times \Omega }|x-y|^2\mathrm{d}\gamma \le \int _{\Omega \times \Omega }|x-y|^2\mathrm{d}{\tilde{\gamma }}\\&=\int _{\Omega \times \Omega }|x-y|^2\mathrm{d}\gamma ^1+\int _{\Omega \times \Omega }|x-y|^2\mathrm{d}\gamma ^2\\&\le W_2^2(\mu ^1,\nu ^1)+W_2^2(\mu ^2,\nu ^2). \end{aligned}$$

Therefore, inequality (A.2) follows. \(\square \)

Appendix B: A refined Aubin–Lions lemma

In [40] the authors present the following version of the classical Aubin–Lions lemma (see [4]):

Theorem B.1

[40, Theorem 2] Let B be a Banach space and \({\mathcal {U}}\) be a family of measurable B-valued function. Let us suppose that there exist a normal coercive integrand \({\mathfrak {F}}:(0,T)\times B\rightarrow [0,+\,\infty ]\), meaning that

  1. 1.

    \({\mathfrak {F}}\) is \(\mathscr {B}(0,T)\otimes \mathscr {B}(B)\)-measurable, where \(\mathscr {B}(0,T)\) and \(\mathscr {B}(B)\) denote the \(\sigma \)-algebgras of the Lebesgue measurable subsets of (0, T) and of the Borel subsets of B respectively;

  2. 2.

    the maps \(v\mapsto {\mathfrak {F}}_t(v):={\mathfrak {F}}(t,v)\) are l.s.c. for a.e. \(t\in (0,T)\);

  3. 3.

    \(\{v\in B:{\mathfrak {F}}_t(v)\le c\}\) are compact for any \(c\ge 0\) and for a.e. \(t\in (0,T),\)

and a l.s.c. map \(g:B\times B\rightarrow [0,+\,\infty ]\) with the property

$$\begin{aligned}&\left[ u,v\in D({\mathfrak {F}}_t),\ g(u,v)=0\right] \Rightarrow u=w,\ \text {for }{\mathrm{a.e.}}\ t\in (0,T). \end{aligned}$$

If

$$\begin{aligned} \sup _{u\in {\mathcal {U}}}\int _0^T{\mathfrak {F}}(t,u(t))\mathrm{d}t<+\,\infty \ \ \text {and}\ \ \lim _{h\downarrow 0}\sup _{u\in {\mathcal {U}}}\int _0^{T-h}g(u(t+h),u(t))\mathrm{d}t=0, \end{aligned}$$

then \({\mathcal {U}}\) is relatively compact in \({\mathscr {M}}(0,T; B).\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I., Mészáros, A.R. On nonlinear cross-diffusion systems: an optimal transport approach. Calc. Var. 57, 79 (2018). https://doi.org/10.1007/s00526-018-1351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1351-9

Mathematics Subject Classification

Navigation