Skip to main content
Log in

The conical complex Monge–Ampère equations on Kähler manifolds

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, by providing the uniform gradient estimates for approximating equations, we prove the existence, uniqueness and regularity of conical parabolic complex Monge–Ampère equation with weak initial data. As an application, we obtain a regularity estimate, that is, any \(L^{\infty }\)-solution of the conical complex Monge–Ampère equation admits the \(C^{2,\alpha ,\beta }\)-regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Équations du type Monge–Ampère sur les variétés kähleriennes compactes. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sci. Sér. A et B 283, A119–A121 (1976)

    MATH  Google Scholar 

  2. Błocki, Z.: A gradient estimate in the Calabi–Yau theorem. Math. Ann. 344, 317–327 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L.A., Kohn, J.J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations. Commun. Pure Appl. Math. 38, 209–252 (1985)

    Article  MATH  Google Scholar 

  4. Cao, H.D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Inventiones Math. 81, 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calabi, E.: On Kähler manifolds with vanishing canonical class. In: Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz 12, 78–89 (1957)

  6. Campana, F., Guenancia, H., Păun, M.: Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. Ann. Sci. de l’École Normale Supérieure Quatrième Série 46, 879–916 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Chen, X.X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds. I: approximation of metrics with cone singularities. J. Am. Math. Soc. 28, 183–197 (2015)

    Article  MATH  Google Scholar 

  8. Chen, X.X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds. II: limits with cone angle less than \(2\pi \). J. Am. Math. Soc. 28, 199–234 (2015)

    Article  MATH  Google Scholar 

  9. Chen, X.X., Donaldson, S., Sun, S.: Kähler–Einstein metrics on Fano manifolds. III: limits as cone angle approaches \(2\pi \) and completion of the main proof. J. Am. Math. Soc. 28, 235–278 (2015)

    Article  MATH  Google Scholar 

  10. Chen, X.X., Wang, Y.Q.: Bessel functions, heat kernel and the conical Kähler–Ricci flow. J. Funct. Anal. 269, 551–632 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, X.X., Wang, Y.Q.: On the long-time behaviour of the Conical Kähler–Ricci flows. J. für die Reine und Angewandte Math

  12. Dinew, S., Zhang, X., Zhang, X.W.: The \(C^{2, \alpha }\) estimate of complex Monge–Ampère equation. Indiana Univ. Math. J. 60, 1713–1722 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dinew, S., Zhang, Z.: On stability and continuity of bounded solutions of degenerate complex Monge–Ampère equations over compact Kähler manifolds. Adv. Math. 225, 367–388 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Edwards, G.: A scalar curvature bound along the conical Kähler-Ricci Flow. J. Geom. Anal. 28, 225–252 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, 2nd edn. Springer, New York (1983)

    Book  MATH  Google Scholar 

  16. Guan, B.: The Dirichlet problem for complex Monge–Ampère equations and regularity of the pluri-complex Green function, Commun. Anal. Geom. 6, 687–703 (1998), a correct, 8 (2000), 213–218

  17. Guan, B., Li, Q.: Complex Monge–Ampère equations and totally real submanifolds. Adv. Math. 225, 1185–1223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guan, B., Li, Q.: A Monge–Ampère type fully nonlinear equation on Hermitian manifolds. Discrete Contin. Dyn. Syst. Ser. B J. Bridging Math. Sci. 17, 1991–1999 (2012)

    Article  MATH  Google Scholar 

  19. Guan, P.F.: The extremal function associated to intrinsic norms. Ann. Math. Second Ser. 156, 197–211 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guan, P.F.: Remarks on the homogeneous complex Monge–Ampère equation, in: Complex analysis, 175–185, Trends in Mathematics, Birkhäuser/Springer Basel AG, Basel (2010)

  21. Guan, P.F.: A gradient estimate for complex Monge–Ampère equation, unpublished

  22. Guedj, V., Zeriahi, A.: Stability of solutions to complex Monge–Ampère equations in big cohomology classes. Math. Res. Lett. 19, 1025–1042 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guenancia, H., Păun, M.: Conic singularities metrics with prescribed Ricci curvature: general cone angles along normal crossing divisors. J. Differ. Geom. 103, 15–57 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hamilton, R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24, 153–179 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hanani, A.: Équations du type de Monge–Ampère sur les variétés hermitiennes compactes. J. Funct. Anal. 137, 49–75 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, L.D., Zhu, X.H.: A remark on \(C^{2,\alpha ,\beta }\) estimates for conic Monge–Ampère equation, preprint

  27. Jeffres, T.: Uniqueness of Kähler–Einstein cone metrics. Publ. Mat. 44, 437–448 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kołodziej, S.: The complex Monge–Ampère equation. Acta Math. 180, 69–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kołodziej, S.: Hölder continuity of solutions to the complex Monge–Ampère equation with the right-hand side in \(L^p\): the case of compact Kähler manifolds. Math. Ann. 342, 379–386 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kołodziej, S.: The Monge–Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52, 667–686 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lieberman, G.: Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ. xii+439 pp. ISBN: 981-02-2883-X (1996)

  32. Liu, J.W., Zhang, X.: Conical Kähler–Ricci flows on Fano manifolds. Adv. Math. 307, 1324–1371 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, J.W., Zhang, X.: The Conical Kähler–Ricci flow with weak initial data on Fano manifolds. Int. Math. Res. Not. 2017, 5343–5384 (2017)

    Google Scholar 

  34. Morgan, J.W., Tian, G.: Ricci flow and the Poincaré conjecture. American Mathematical Society (2007)

  35. Phong, D., Sesum, N., Sturm, J.: Multiplier ideal sheaves and the Kähler–Ricci flow. Commun. Anal. Geom. 15, 613–632 (2007)

    Article  MATH  Google Scholar 

  36. Phong, D., Song, J., Sturm, J.: Complex Monge–Ampère equations, Surveys in differential geometry. XVII, pp. 327–410, Int. Press, Boston, MA (2012)

  37. Székelyhidi, G., Tosatti, V.: Regularity of weak solutions of a complex Monge–Ampère equation. Anal. PDE 4, 369–378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, L.M.: Unnormalize conical Kähler–Ricci flow, arXiv:1411.7284

  39. Song, J., Tian, G.: The Kähler–Ricci flow through singularities. Inventiones Math. 207, 519–595 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tian, G.: On the existence of solutions of a class of Monge–Ampère equations, A Chinese summary appears in Acta Math. Sinica 32, 576 (1989). Acta Mathematica Sinica. New Series, 4, 250–265 (1988)

  41. Tian, G.: K-stability and Kähler–Einstein metrics. Commun. Pure Appl. Math. 68, 1085–1156 (2015)

    Article  MATH  Google Scholar 

  42. Tian, G.: A 3rd derivative estimate for conical Kähler metrics, preprint

  43. Wang, Y.: On the \(C^{2,\alpha }\)-regularity of the complex Monge–Ampère equation. Math. Res. Lett. 19, 939–946 (2012)

    MathSciNet  Google Scholar 

  44. Wang, Y.Q.: Smooth approximations of the conical Kähler–Ricci flows. Math. Ann. 365, 835–856 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

  46. Zhang, X., Zhang, X.W.: Regularity estimates of solutions to complex Monge–Ampère equations on Hermitian manifolds. J. Funct. Anal. 260, 2004–2026 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, X.W.: A priori estimates for complex Monge–Ampère equation on Hermitian manifolds. Int. Math. Res. Not. 19, 3814–3836 (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their advisors Professor Jiayu Li and Professor Xi Zhang for providing many suggestions and encouragements. The J. Liu also would like to thank Professor Miles Simon and Professor Xiaohua Zhu for their constant help. The J. Liu is partially supported by SPP2026 from the German Research Foundation (DFG), and the C. Zhang is partially supported by NSF in China No. 11625106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanjing Zhang.

Additional information

Communicated by A. Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, C. The conical complex Monge–Ampère equations on Kähler manifolds. Calc. Var. 57, 44 (2018). https://doi.org/10.1007/s00526-018-1318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1318-x

Mathematics Subject Classification

Navigation