Skip to main content
Log in

Clustered solutions to low-order perturbations of fractional Yamabe equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \((X, g^+)\) be an asymptotically hyperbolic manifold and \((M, [\hat{h}])\) be its conformal infinity. We construct positive clustered solutions to low-order perturbations of \(\gamma \)-Yamabe equations (\(0< \gamma < 1\)) on \((M, \hat{h})\), which are slightly supercritical, under certain geometric and dimensional assumptions. These solutions certainly exhibit non-isolated blow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The existence and uniqueness of the solution \(U \in H^{1,2}(X; \rho ^{1-2\gamma })\) for any given function \(g \in L^{p+1}(M)\) is guaranteed by the definition of the *-norm in (2.10) and the Riesz representation theorem. Also, [10, Lemma 3.3] implies that if \(g \in L^{q_{\epsilon }/(p+\epsilon )}(M)\), then \(u = U|_M \in L^{q_{\epsilon }}(M)\).

  2. By (2.8), it holds that \(\delta ^{2\gamma } \sim \epsilon \), \(\delta ^{(n-2\gamma ) (\alpha -\beta )} \sim \epsilon ^{1 + {n-4\gamma \over \gamma (n-2\gamma +2)}}\) and \(\delta ^2 \sim \epsilon ^{1 \over \gamma }\).

  3. The arguments in [25, Section 2] involving the Moser iteration technique also work in our setting, see [18, Section 3]. Also, in order to take advantage of the regularity theory, we need that the value of \(\sup _{\epsilon > 0} \Vert \Phi _{\ell \epsilon }^{p-1+\epsilon }\Vert _{L^{n/(2\gamma )}(M \setminus B_{\hat{h}}(\xi _0, r))}\) is sufficiently small for a fixed radius \(r > 0\), which is true owing to our choice of \(q_{\epsilon }\) in (2.11).

  4. Once it is proved, even though the maximization argument does not work, we may apply the general critical point result of Thizy and Vétois [46, Lemma A.1].

  5. Precisely, \(\mathcal {M}_0 > 0\) if \(n \ge 4\) for \(\gamma \in (\sqrt{5/11}, 1)\), \(n \ge 5\) for \(\gamma \in (1/2, 1)\), \(n \ge 6\) for \(\gamma \in (\sqrt{1/19}, 1)\) and \(n \ge 7\) for any \(\gamma \in (0,1)\). Observe that \(\mathcal {M}_0\) is the quantity that already appeared in [29, Corollary 2.7].

  6. Here \(\zeta > 0\) is an arbitrary number in the nonempty interval \(((2\gamma n-4\gamma ^2-4)/(n-2\gamma +2), 2\gamma ]\) such that \(n > 2+2\gamma +\zeta \) (cf. Proof of Corollary 3.7 (1)).

  7. The second integral in the parenthesis is \(O(\epsilon ^{1/\gamma })\) if \(n \ge 4\).

References

  1. Almaraz, S.: A compactness theorem for scalar-flat metrics on manifolds with boundary. Calc. Var. Partial Differential Equations 41, 341–386 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubin, T.: Équations différentielles non linéaires et Problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)

    MATH  MathSciNet  Google Scholar 

  3. Brendle, S.: Blow-up phenomena for the Yamabe equation. J. Am. Math. Soc. 21, 951–979 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brendle, S., Marques, F.: Blow-up phenomena for the Yamabe equation II. J. Differential Geom. 81, 225–250 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differential Equations 32, 1245–1260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Case, J.S.: Some energy inequalities involving fractional GJMS operators. Anal. PDE 10, 253–280 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  7. Case, J.S., Chang, S.-Y.A.: On fractional GJMS operators. Commun. Pure Appl. Math. 69, 1017–1061 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chang, S.-Y.A., González, M.d.M.: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)

  9. Chen, C.C., Lin, C.S.: Blowing up with infinite energy of conformal metrics on \(S^n\). Commun. Partial Differential Equations 24, 785–799 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Choi, W., Kim, S.: On perturbations of the fractional Yamabe problem. Calc. Var. Partial Differential Equations 56, 14 (2017). (46 pages)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dancer, E.N., Micheletti, A.M., Pistoia, A.: Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds. Manuscr. Math. 128, 163–193 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dávila, J., del Pino, M., Sire, Y.: Nondegeneracy of the bubble in the critical case for nonlocal equations. Proc. Am. Math. Soc. 141, 3865–3870 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dipierro, S., Medina, M., Valdinoci, E.: Fractional elliptic problems with critical growth in the whole of \({\mathbb{R}}^n\), Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], 15. Edizioni della Normale, Pisa, viii+152 pp (2017)

  14. Druet, O.: Compactness for Yamabe metrics in low dimensions. Int. Math. Res. Not. 23, 1143–1191 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Druet, O., Hebey, E.: Blow-up examples for second order elliptic PDEs of critical Sobolev growth. Trans. Am. Math. Soc. 357, 1915–1929 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Escobar, J.F.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary. Ann. Math. 136, 1–50 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differential Equations 7, 77–116 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fall, M.M., Felli, V.: Unique continuation properties for relativistic Schrodinger operators with a singular potential. Discrete Contin. Dyn. Syst. 35, 5827–5867 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fang, Y., González, M.d.M.: Asymptotic behavior of Palais–Smale sequences associated with fractional Yamabe-type equations. Pac. J. Math. 278, 369–405 (2015)

  20. Felli, V., Ahmedou, A.O.: Compactness results in conformal deformations of Riemannian metrics on manifolds with boundaries. Math. Z. 244, 175–210 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Felli, V., Ahmedou, A.O.: A geometric equation with critical nonlinearity on the boundary. Pac. J. Math. 218, 75–99 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. González, M.d.M., Qing, J.: Fractional conformal Laplacians and fractional Yamabe problems. Anal. PDE 6, 1535–1576 (2013)

  23. González, M.d.M., Wang, M.: Further results on the fractional Yamabe problem: the umbilic case. J. Geom. Anal. 1–39 (2017). doi:10.1007/s12220-017-9794-3

  24. Graham, C.R., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152, 89–118 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. 16, 1111–1171 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Joshi, M.S., Barreto, A.S.: Inverse scattering on asymtotically hyperbolic manifolds. Acta Math. 184, 41–86 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Khuri, M., Marques, F., Schoen, R.: A compactness theorem for the Yamabe problem. J. Differential Geom. 81, 143–196 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kim, S., Musso, M., Wei, J.: A non-compactness result on the fractional Yamabe problem in large dimensions. J. Funct. Anal. doi:10.1016/j.jfa.2017.07.011

  29. Kim, S., Musso, M., Wei, J.: Existence theorems of the fractional Yamabe problem. Anal. PDE 11, 75–113 (forthcoming)

  30. Kim, S., Musso, M., Wei, J.: A compactness theorem of the fractional Yamabe problem, part I: the non-umbilic conformal infinity. Preprint

  31. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Li, Y.Y., Zhang, L.: Compactness of solutions to the Yamabe problem II. Calc. Var. Partial Differential Equations 25, 185–237 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Li, Y.Y., Zhang, L.: Compactness of solutions to the Yamabe problem III. J. Funct. Anal. 245, 438–474 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Li, Y.Y., Zhu, M.: Yamabe type equations on three dimensional Riemannian manifolds. Commun. Contemp. Math. 1, 1–50 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  36. Marques, F.C.: A priori estimates for the Yamabe problem in the non-locally conformally flat case. J. Differential Geom. 71, 315–346 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Mazzeo, R.R., Melrose, R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75, 260–310 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  38. Micheletti, A.M., Pistoia, A., Vétois, J.: Blow-up solutions for asymptotically critical elliptic equations on Riemannian manifolds. Indiana Univ. Math. J. 58, 1719–1746 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Morabito, P., Pistoia, A., Vaira, G.: Towering phenomena for the Yamabe equation on symmetric manifolds. Potential Anal. 47, 53–102 (2017)

  40. Pistoia, A., Vaira, G.: Clustering phenomena for linear perturbation of the Yamabe equation. J. Lond. Math. Soc. 1–13. arXiv:1511.07028

  41. Robert, F., Vétois, J.: A general theorem for the construction of blowing-up solutions to some elliptic nonlinear equations via Lyapunov–Schmidts finite-dimensional reduction, Concentration Analysis and Applications to PDE, Trends in Mathematics, pp. 85–116. Springer, Basel (2013)

  42. Robert, F., Vétois, J.: Examples of non-isolated blow-up for perturbations of the scalar curvature equation on non-locally conformally flat manifolds. J. Differential Geom. 98, 349–356 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  43. Schoen, R.: Course notes on ‘Topics in differential geometry’ at Stanford University (1988). https://www.math.washington.edu/~pollack/research/Schoen-1988-notes.html

  44. Schoen, R.: On the number of constant scalar curvature metrics in a conformal class. In: Lawson, H.B., Tenenblat, K. (eds.) Differential Geometry: A Symposium in Honor of Manfredo Do Carmo, pp. 311–320. Wiley, London (1991)

    Google Scholar 

  45. Tan, J., Xiong, J.: A Harnack inequality for fractional Laplace equations with lower order terms. Discrete Contin. Dyn. Syst. 31, 975–983 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  46. Thizy, P.-D., Vétois, J.: Positive clusters for smooth perturbations of a critical elliptic equation in dimensions four and five. Preprint. arXiv:1603.06479

Download references

Acknowledgements

Part of the work was done while the third author was visiting Southwest university in China, which he thanks for the hospitality and financial support. The first and second authors are partially supported financially by NSFC (Nos. 11501468, 11501469). The third author is partially supported by the research fund of Hanyang University (HY-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunghyeok Kim.

Additional information

Communicated by P. Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Deng, S. & Kim, S. Clustered solutions to low-order perturbations of fractional Yamabe equations. Calc. Var. 56, 160 (2017). https://doi.org/10.1007/s00526-017-1253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1253-2

Mathematics Subject Classification

Navigation