Skip to main content
Log in

On the Langevin equation with variable friction

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study two asymptotic problems for the Langevin equation with variable friction coefficient. The first is the small mass asymptotic behavior, known as the Smoluchowski–Kramers approximation, of the Langevin equation with strictly positive variable friction. The second result is about the limiting behavior of the solution when the friction vanishes in regions of the domain. Previous works on this subject considered one dimensional settings with the conclusions based on explicit computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992). doi:10.1090/S0273-0979-1992-00266-5

    Article  MATH  MathSciNet  Google Scholar 

  2. Evans, L.C.: The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinb. Sect. A 111(3–4), 359–375 (1989). doi:10.1017/S0308210500018631

    Article  MATH  MathSciNet  Google Scholar 

  3. Evans, L.C.: Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. R. Soc. Edinb. Sect. A 120(3–4), 245–265 (1992). doi:10.1017/S0308210500032121

    Article  MATH  MathSciNet  Google Scholar 

  4. Freidlin, M., Hu, W.: Smoluchowski–Kramers approximation in the case of variable friction, Problems in mathematical analysis, No. 61. J. Math. Sci. (N.Y.) 179(1), 184–207 (2011). doi:10.1007/s10958-011-0589-y

    Article  MATH  MathSciNet  Google Scholar 

  5. Freidlin, M., Wenqing, H., Wentzell, A.: Small mass asymptotic for the motion with vanishing friction. Stoch. Process. Appl. 123(1), 45–75 (2013). doi:10.1016/j.spa.2012.08.013

    Article  MATH  MathSciNet  Google Scholar 

  6. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Reprint of the 1998 edition. Springer, Berlin (2001)

  7. Lieberman, G.M.: The conormal derivative problem for elliptic equations of variational type. J. Differ. Equ. 49(2), 218–257 (1983). doi:10.1016/0022-0396(83)90013-X

    Article  MATH  MathSciNet  Google Scholar 

  8. Patrizi, S.: Principal eigenvalues for Isaacs operators with Neumann boundary conditions. NoDEA Nonlinear Differ. Equ. Appl. 16(1), 79–107 (2009). doi:10.1007/s00030-008-7042-z

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Ishii.

Additional information

Communicated by N. Trudinger.

Hitoshi Ishii: Partially supported by the KAKENHI No. 26220702, and No. 16H03948, JSPS.

Panagiotis E. Souganidis: Partially supported by the National Science Foundation Grants DMS-1266383 and DMS-1600129 and the Office for Naval Research Grant N00014-17-1-2095.

Hung V. Tran: Partially supported by the National Science Foundation Grants DMS-1615944 and DMS-1664424. This work began while at The University of Chicago as Dickson Instructor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, H., Souganidis, P.E. & Tran, H.V. On the Langevin equation with variable friction. Calc. Var. 56, 161 (2017). https://doi.org/10.1007/s00526-017-1240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1240-7

Mathematics Subject Classification

Navigation