Skip to main content
Log in

Generalized solutions of a kinetic granular media equation by a gradient flow approach

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider a one-dimensional kinetic model of granular media in the case where the interaction potential is quadratic. Taking advantage of a simple first integral, we can use a reformulation (equivalent to the initial kinetic model for classical solutions) which allows measure solutions. This reformulation has a Wasserstein gradient flow structure (on a possibly infinite product of spaces of measures) for a convex energy which enables us to prove global in time well-posedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agueh, M.: Local existence of weak solutions to kinetic models of granular media. Arch. Ration. Mech. Anal. (2016) (in press)

  2. Agueh, M., Carlier, G., Illner, R.: Remarks on kinetic models of granular media: asymptotics and entropy bounds. Kinet. Relat. Models 8(2), 201–214 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  4. Benedetto, D., Caglioti, E., Pulvirenti, M.: A kinetic equation for granular media. RAIRO Model. Math. Anal. Numer. 31(5), 615–641 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Benedetto, D., Caglioti, E., Pulvirenti, M.: Erratum: A kinetic equation for granular media. M2AN Math. Model. Numer. Anal. 33, 439–441 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertozzi, A.L., Laurent, T., Rosado, J.: \(L^p\) theory for multidimensional aggregation model. Commun. Pure Appl. Math. 64, 45–83 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenier, Y.: On the Darcy and hydrostatic limits of the convective Navier–Stokes equations. Chin. Ann. Math. 30, 1–14 (2009)

    Article  MATH  Google Scholar 

  8. Brenier, Y., Gangbo, W., Savaré, G., Westdickenberg, M.: Sticky particle dynamics with interactions. J. Math. Pures Appl. 99(9), no. 5, 577–617 (2013)

  9. Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35(6), 2317–2328 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carlier, G., Laborde, M.: On systems of continuity equations with nonlinear diffusion and nonlocal drifts (2015) (preprint)

  11. Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19, 1–48 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Carrillo, J.A., McCann, R.J., Villani, C.: Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179, 217–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carrillo, J.A., DiFrancesco, M., Figalli, A., Laurent, L., Slepcev, D.: Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156(2), 229–271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  15. Di Francesco, M., Fagioli, S.: Measure solutions for nonlocal interaction PDEs with two species. Nonlinearity 26, 2777–2808 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Laurent, T.: Local and global existence for an aggregation equation. Commun. Part. Diff. Eq. 32, 1941–1964 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Villani, C.: Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  19. Villani, C.: Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg (2009)

    Book  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Yann Brenier, Reinhard Illner and Maxime Laborde for fruitful discussions about this work. M.A. acknowledges the support of NSERC through a Discovery Grant. G.C. gratefully acknowledges the hospitality of the Mathematics and Statistics Department at UVIC (Victoria, Canada), and the support from the CNRS, from the ANR, through the project ISOTACE (ANR-12- MONU-0013) and from INRIA through the action exploratoire MOKAPLAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Carlier.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agueh, M., Carlier, G. Generalized solutions of a kinetic granular media equation by a gradient flow approach. Calc. Var. 55, 37 (2016). https://doi.org/10.1007/s00526-016-0978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-0978-7

Keywords

Mathematics Subject Classification

Navigation