Skip to main content
Log in

Local solutions to a free boundary problem for the Willmore functional

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider a free boundary problem for the Willmore functional \(\mathcal{W}(f) = \frac{1}{4} \int _\Sigma H^2\,d\mu _f\). Given a smooth bounded domain \(\Omega \subset {\mathbb R}^3\), we construct Willmore disks which are critical in the class of surfaces meeting \(\partial \Omega \) at a right angle along their boundary and having small prescribed area. Using rescaling and the implicit function theorem, we first obtain constrained solutions with prescribed barycenter on \(\partial \Omega \). We then study the variation of that barycenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R.A.: Sobolev spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satsfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexakis, S., Mazzeo, R.: Complete Willmore surfaces in \({\mathbb{H}}^3\) with bounded energy: boundary regularity and bubbling (2012, preprint). arXiv:1204.4955v3 [math.DG]

  4. Bryant, R.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20, 23–53 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Dall’Acqua, A.: Uniqueness for the homogeneous Dirichlet Willmore boundary problem. Ann. Global Anal. Geom. 42, 411–420 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dall’Acqua, A., Deckelnick, K., Grunau, H.-C.: Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv. Calc. Var. 1, 379–397 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Deckelnick, K., Grunau, H.-C.: Boundary value problems for the one-dimensional Willmore equation. Calc. Var. Partial Differ. Equ. 30, 293–314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fall, M.M.: Area-minimizing regions with small volume in Riemannian manifolds with boundary. Pac. J. Math. 244, 437–451 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Fall, M.M.: Embedded disc-type surfaces with large constant mean curvature and free boundaries. Commun. Contemp. Math. 14 (2012)

  10. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  11. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuwert, E., Schätzle, R.: Removability of point singularities of Willmore surfaces. Ann. Math. 160, 315–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lamm, T., Metzger, J.: Small surfaces of Willmore type in Riemannian manifolds. Int. Math. Res. Not. IMRN, 3786–3813 (2010)

  14. Lamm, T., Metzger, J., Schulze, F.: Foliations of asymptotically flat manifolds by surfaces of Willmore type. Math. Ann. 350, 1–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Laurain, P., Mondino, A.: Concentration of small Willmore spheres in Riemannian \(3\)-manifolds (2013, preprint). arXiv:1310.7082 [math.DG]

  16. Link, F.: Gradient flow for the Willmore functional in Riemannian manifolds, Dissertation, Freiburg (2013). arXiv:1308.6055 [math.DG]

  17. Mondino, A.: Some results about existence of critical points for the Willmore functional. Math. Z., 583–622 (2010)

  18. Morrey, C.B.: Multiple integrals in the calculus of variations. Grundlehren math. Wiss., vol. 130. Springer, New York (1966)

  19. Nitsche, J.C.C.: Boundary value problems for variational integrals involving surface curvatures. Q. Appl. Math. 51, 363–387 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Pacard, F., Xu, X.: Constant mean curvature spheres in Riemannian manifolds. Manuscr. Math. 128, 275–295 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Palmer, B.: Uniqueness theorems for Willmore surfaces with fixed and free boundaries. Indiana Univ. Math. J. 49, 1581–1601 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Volkmann, A.: A monotonicity formula for free boundary surfaces with respect to the unit ball (2014, preprint). arXiv:1402.4784 [math.DG]

  23. Schätzle, R.: The Willmore boundary problem. Calc. Var. Partial Differ. Equ. 37, 275–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Takens, F.: The minimal number of critical points of a function on a compact manifold and the Lusternik–Shnirelman category. Invent. Math. 6, 197–244 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ye, R.: Foliation by constant mean curvature spheres. Pac. J. Math. 147, 381–396 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Kuwert.

Additional information

Communicated by A. Malchiodi.

Appendix: Construction of the barycenter

Appendix: Construction of the barycenter

The concept of Riemannian barycenter is due to Karcher [11]. For our purposes we only need a local version, which does not involve e.g. Riemannian comparison theory. Let \(U = D_\delta (0) \subset {\mathbb R}^2\), \(V = B_{\frac{3}{2}}(0) \subset {\mathbb R}^3\). For \(x \in U\), \(v \in V\) we put

$$\begin{aligned} c_{x,v}:[0,1] \rightarrow Z_2,\,c_{x,v}(t) = x + t v. \end{aligned}$$

Further let \(X = \{\phi \in C^2([0,1],{\mathbb R}^3): \phi (0) = \phi '(0) = 0\}\) and

$$\begin{aligned} X_\varepsilon = \{\phi \in X: \Vert \phi \Vert _{C^0([0,1])} < \varepsilon \}. \end{aligned}$$

We finally put \(G_\varepsilon = \{\tilde{g} \in C^l(\bar{Z_2},{\mathbb R}^{3 \times 3}): \Vert \tilde{g} - \delta \Vert _{C^l(Z_2)} < \varepsilon \}\) for \(l \ge 1\), and consider

$$\begin{aligned} F:U \times V \times X_\varepsilon \times G_\varepsilon \rightarrow C^0([0,1],{\mathbb R}^3),\, F[x,v,\phi ,\tilde{g}] = c'' + \tilde{\Gamma } \circ c (c',c')|_{c = c_{x,v} +\phi }. \end{aligned}$$

We claim that F is of class \(C^{l-1}\). Write \(F = F_2 \circ F_1\) where \(F_1\) is the affine map

$$\begin{aligned} F_1:U \times V \times X_\varepsilon \rightarrow C^2([0,1],{\mathbb R}^3),\,F_1[x,v,\phi ] = c_{x,v} + \phi . \end{aligned}$$

\(F_1\) is continuous and hence smooth. The nonlinear map \(F_2\) is given by

$$\begin{aligned} F_2:C^2([0,1],Z_2) \times G_\varepsilon \rightarrow C^0([0,1],{\mathbb R}^3),\, F_2[c,\tilde{g}] = c'' + \tilde{\Gamma } \circ c (c',c'). \end{aligned}$$

The composition \(C^2 \times C^{l-1} \rightarrow C^0\), \((c,\tilde{\Gamma }) \mapsto \tilde{\Gamma } \circ c\), is of class \(C^{l-1}\). Namely differentiating \(l-1\) times with respect to c leaves exactly a \(C^0\) function. Since we can build \(F_2\) from \(\tilde{\Gamma }\circ c\) by linear or bilinear operations, it is also of class \(C^{l-1}\). Assuming from now on \(l \ge 2\), we have

$$\begin{aligned} D_c F_2[c,\tilde{g}] \phi= & {} \phi '' + 2\, \tilde{\Gamma } \circ c(\phi ',c') + (D\tilde{\Gamma })\circ c (\phi ,c',c')\\ D_{\tilde{g}} F_2[c,\tilde{g}] h= & {} \frac{1}{2} \left( \tilde{g}^{kp}(\partial _i h_{jp} + \partial _j h_{ip} - \partial _p h_{ij}) \right) \circ c\, (c^i)' (c^j)' e_k\\&- \frac{1}{2} \left( \tilde{g}^{km} h_{mn} \tilde{g}^{np} \left( \partial _i \tilde{g}_{jp} + \partial _j \tilde{g}_{ip} - \partial _p \tilde{g}_{ij}\right) \right) \circ c\, (c^i)' (c^j)' e_k. \end{aligned}$$

In particular

$$\begin{aligned} F[x,v,0,\delta ] = 0 \quad \text{ and } \quad D_\phi F[x,v,0,\delta ] \psi = \psi ''. \end{aligned}$$

The map \(D_\phi F[x,v,0,\delta ]:X \rightarrow C^0([0,1],{\mathbb R}^3)\) is an isomorphism, in fact the equation \(\psi '' = f\) has the unique solution \(\psi \in X\) given by

$$\begin{aligned} \psi (u) = \int _0^u \int _0^s f(t)dt\,ds. \end{aligned}$$

By the implicit function theorem, the set of solutions of \(F[x,v,\phi ,\tilde{g}] = 0\) near \([0,v_0,0,\delta ]\) is given as a \(C^{l-1}\) graph

$$\begin{aligned} \mathbf{\phi } = \mathbf{\phi }[x,v,\tilde{g}], \end{aligned}$$

i.e. the corresponding curves \(\mathbf{c}[x,v,\tilde{g}] = c_{x,v} + {\phi }[x,v,\tilde{g}]\) are geodesics with respect to \(\tilde{g}\) having initial data \(c(0) = x\), \(c'(0) = v\). The exponential mapping is now given by

$$\begin{aligned} \exp :U \times V \times G_\varepsilon \rightarrow Z_2,\,\exp _x^{\tilde{g}}(v) = \mathbf{c}[x,v,\tilde{g}](1). \end{aligned}$$

Now \(D\exp _x^{\delta } = \mathrm{Id}_{{\mathbb R}^3}\), Thus for \(l \ge 2\) and \(\varepsilon > 0\) small we get

$$\begin{aligned} \Vert D\exp ^{\tilde{g}}_x - \mathrm{Id}_{{\mathbb R}^3}\Vert _{C^0(V)} \le \varepsilon _0 \quad \text{ for } \quad \tilde{g} \in G_\varepsilon ,\,x \in U = D_\delta (0). \end{aligned}$$

This gives for \(v,w \in V\)

$$\begin{aligned} \left| \exp ^{\tilde{g}}_x (v) - \exp ^{\tilde{g}}_x (w)\right|= & {} \left| \int _0^1 D\exp ^{\tilde{g}}_x((1-t)w + tv)\cdot (v-w)\,dt \right| \\\ge & {} |v-w| - \left| \int _0^1 \left( D\exp ^{\tilde{g}}_x((1-t)w + tv) - \mathrm{Id}_{{\mathbb R}^3} \right) \cdot (v-w)\,dt \right| \\\ge & {} (1-\varepsilon _0) |v-w|. \end{aligned}$$

This shows that \(\exp _x^{\tilde{g}}\) is injective on \(V = B_{\frac{3}{2}}(0)\). We further estimate

$$\begin{aligned} \left| \exp ^{\tilde{g}}_x(v) - v\right| = \left| \int _0^1 \left( D\exp ^{\tilde{g}}_x(tv) - \mathrm{Id}_{{\mathbb R}^3} \right) \,dt \cdot v \right| \le \varepsilon _0\,|v|. \end{aligned}$$

We now show that \(\exp _x^{\tilde{g}}(V) \cap B_{\frac{5}{4}}(0)\) is a closed subset of \(B_{\frac{5}{4}}(0)\). Assume that \(\exp _x^{\tilde{g}}(v_k) \rightarrow p \in B_{\frac{5}{4}}(0)\). From the above we then have

$$\begin{aligned} |v_k| - \frac{5}{4} < |v_k| - |\exp _x^{\tilde{g}}(v_k)| \le |v_k - \exp _x^{\tilde{g}}(v_k)| \le \varepsilon _0 |v_k|, \end{aligned}$$

which implies \(|v_k| \le (1-\varepsilon _0)^{-1}\, \frac{5}{4} < \frac{3}{2}\) for appropriate \(\varepsilon _ 0 > 0\). Up to a subsequence, we thus have \(v_k \rightarrow v \in V\) and \(\exp _x^{\tilde{g}}(v) = p\). Now \(\exp _x^{\tilde{g}}(V) \cap B_{\frac{5}{4}}(0)\) is also open by the inverse function theorem, hence we have \(B_{\frac{5}{4}}(0) \subset \exp _x^{\tilde{g}}(V)\), and we obtain the inverse

$$\begin{aligned} (\exp _x^{\tilde{g}})^{-1}: B_{\frac{5}{4}}(0) \rightarrow V. \end{aligned}$$

Of course we are not claiming that \(\exp _x^{\tilde{g}}\) maps all of V into \(B_{\frac{5}{4}}(0)\). The inverse is of class \(C^{l-1}\) in all variables \(x \in U\), \(p \in B_{\frac{5}{4}}(0)\) and \(\tilde{g} \in C^l(Z_2)\). Namely let \(\exp _{x_0}^{\tilde{g}_0}(v_0) = p_0 \in B_{\frac{5}{4}}(0)\), where \(v_0 \in V\). Consider the equation

$$\begin{aligned} \exp _x^{\tilde{g}}(v) - p = 0. \end{aligned}$$

By the implicit function theorem, the set of solutions has a local representation \(v = v[x,p,\tilde{g}]\) which is of class \(C^{l-1}\). But the local inverse equals the global inverse, and hence also the global inverse is of class \(C^{l-1}\) as claimed.

Lemma 12

(two-dimensional barycenter) Assume \(w:{\mathbb S}^2_{+} \rightarrow {\mathbb R}\), \(\tilde{g}:Z_2 \rightarrow {\mathbb R}^{3 \times 3}\) belong to the neighborhoods \(W_\varepsilon \), \(G_\varepsilon \) given by

$$\begin{aligned} \Vert w\Vert _{C^1({\mathbb S}^2_{+})} < \varepsilon \quad \text{ and } \quad \Vert \tilde{g}-\delta \Vert _{C^l(Z_2)} < \varepsilon \quad \text{ where } l\ge 2. \end{aligned}$$

For \(\varepsilon > 0\) small we then have a welldefined function

$$\begin{aligned} X[w,\tilde{g}]:U \rightarrow {\mathbb R}^2,\,X[w,\tilde{g}](x) = -\pi _{{\mathbb R}^2} \left( \int _{{\mathbb S}^2_{+}} (\exp ^{\tilde{g}}_x)^{-1} (f(\omega ))\,d\mu _g(\omega ) \right) , \end{aligned}$$

and there is a unique point \(x \in U\) with \(X[w,\tilde{g}](x) = 0\). This point \(x = C[w,\tilde{g}]\) is called the two-dimensional barycenter of (the radial graph of) w with respect to \(\tilde{g}\). The map \(C[w,\tilde{g}]\) is of class \(C^{l-1}\).

Proof

Let \(f(\omega ) = \omega + w(\omega )\). Fixing a coordinate system on \({\mathbb S}^2_{+}\), we consider the map

$$\begin{aligned} U \times W_\varepsilon \times G_\varepsilon \rightarrow C^0({\mathbb S}^2_{+},{\mathbb R}^3),\,[x,w,\tilde{g}] \mapsto (\exp ^{\tilde{g}}_x)^{-1} \circ f\, \sqrt{\det g}. \end{aligned}$$
(5.1)

By standard rules for product and composition, the right hand side belongs to \(C^0({\mathbb S}^2_{+},{\mathbb R}^3)\); in particular \(X[w,\tilde{g}]\) is well-defined. We claim that the map (5.1) is of class \(C^{l-1}\) in all three variables. For this we recall that \(\Psi [x,p,\tilde{g}] = (\exp _x^{\tilde{g}})^{-1}(p)\) is of class \(C^{l-1}\). For \(\omega \in {\mathbb S}^2_{+}\) fixed we have the \(C^{l-1}\) composition

$$\begin{aligned} \begin{array}{ccccc} U \times W_\varepsilon \times G_\varepsilon &{} \mathop {\rightarrow }\limits ^{C^\infty } &{} U \times B_{\frac{5}{4}}(0) \times G_\varepsilon &{} \mathop {\rightarrow }\limits ^{\Psi } &{} V\\ (x,w,\tilde{g}) &{} \mapsto &{} (x,f(\omega ),\tilde{g}) &{}\mapsto &{} \Psi [x,f(\omega ),\tilde{g}]. \end{array} \end{aligned}$$

Now all derivatives with respect to \(x,w,\tilde{g}\) up to order \(l-1\) depend also continuously on \(\omega \), which yields the claim. For \(\tilde{g} = \delta \) we have \((\exp _x)^{-1}(p) = p-x\) which implies

in particular \(X[0,\delta ](0) = 0\) and \(D_x X[0,\delta ](x) = 2\pi \, \mathrm{Id}_{{\mathbb R}^2}\). Thus by the implicit function theorem there is a unique point \(x \in U\) with \(X[w,\tilde{g}](x) = 0\), and the resulting map \(x = C[w,\tilde{g}]\) is of class \(C^{l-1}\). \(\square \)

From the proof we note the explicit formula

(5.2)

We consider the two coordinates \(C^i[f,\tilde{g}]\) of the barycenter as functionals depending on w resp. f, and we now compute the corresponding \(L^2\) gradient. Consider a compactly supported variation of f in direction \(\phi = \varphi \nu \). Then we have

$$\begin{aligned} \frac{\partial }{\partial \varepsilon } (g_{\varepsilon })_{ij}|_{\varepsilon = 0} = - 2\varphi h_{ij} \quad \text{ and } \quad \frac{\partial }{\partial \varepsilon } d\mu _{g_\varepsilon }|_{\varepsilon = 0} = - \varphi H \,d\mu _g. \end{aligned}$$

The first variation of \(X[f,\tilde{g}]\) is then

$$\begin{aligned} \frac{\partial }{\partial \varepsilon } X[f_\varepsilon ,\tilde{g}](x)|_{\varepsilon =0}= & {} -\, \pi _{{\mathbb R}^2} \int _{{\mathbb S}^2_{+}} D ((\exp ^{\tilde{g}}_x)^{-1})(f(\omega )) \cdot \phi (\omega )\,d\mu _g(\omega )\\&+\, \pi _{{\mathbb R}^2} \int _{{\mathbb S}^2_{+}} (\exp ^{\tilde{g}}_x)^{-1}(f(\omega )) H(\omega ) \varphi (\omega )\,d\mu _g(\omega ). \end{aligned}$$

By definition of the barycenter we have

$$\begin{aligned} 0= & {} \frac{\partial }{\partial \varepsilon } X \left[ f_\varepsilon ,\tilde{g}\right] (C[f_\varepsilon ,\tilde{g}])|_{\varepsilon =0}\\= & {} -\,\pi _{{\mathbb R}^2} \int _{{\mathbb S}^2_{+}} D \left( (\exp ^{\tilde{g}}_x)^{-1} \right) (f(\omega )) \phi (\omega )\,d\mu _g(\omega )|_{x = C[f,\tilde{g}]}\\&+\, \pi _{{\mathbb R}^2} \int _{{\mathbb S}^2_{+}} (\exp ^{\tilde{g}}_x)^{-1}(f(\omega )) H(\omega ) \varphi (\omega )\,d\mu _g(\omega )|_{x = C[f,\tilde{g}]}\\&-\, \pi _{{\mathbb R}^2} \int _{{\mathbb S}^2_{+}} D_x (\exp ^{\tilde{g}}_x)^{-1} (f(\omega ))\,d\mu _g(\omega )|_{x = C[f,\tilde{g}]} \cdot \frac{\partial }{\partial \varepsilon } C[f_\varepsilon ,\tilde{g}]|_{\varepsilon =0}. \end{aligned}$$

This implies the formula

$$\begin{aligned} \frac{\partial }{\partial \varepsilon }C[f_\varepsilon ,\tilde{g}]|_{\varepsilon =0}= & {} \left( \pi _{{\mathbb R}^2} \int _{{\mathbb S}^2_{+}} D_x (\exp ^{\tilde{g}}_x)^{-1}(f(\omega ))\,d\mu _g(\omega ) \right) ^{-1}|_{x = C[f,\tilde{g}]} \\&\cdot \left( -\pi _{{\mathbb R}^2} \int _{{\mathbb S}^2_{+}} D \left( (\exp ^{\tilde{g}}_x)^{-1} \right) (f(\omega )) \phi (\omega )\,d\mu _g(\omega )|_{x = C[f,\tilde{g}]}\right. \\&\left. +\, \pi _{{\mathbb R}^2} \int _{{\mathbb S}^2_{+}} (\exp ^{\tilde{g}}_x)^{-1}(f(\omega )) H(\omega ) \varphi (\omega )\,d\mu _g(\omega )|_{x = C[f,\tilde{g}]} \right) . \end{aligned}$$

Under reparametrizations of f the barycenter remains the same, hence the \(L^2\) gradient of \(C^i[f,\tilde{g}]\) is normal along f. Taking the \(\tilde{g}\) inner product with \(\nu \) yields a scalar function, which we denote by \(\mathrm{grad}_{L^2}\,C^i[w,\tilde{g}]\) in slight abuse of notation. We now conclude

$$\begin{aligned} \sum _{i=1}^2 \mathrm{grad}_{L^2}\,C^i[f,\tilde{g}] e_i&= \left( \pi _{{\mathbb R}^2} \int _{{\mathbb S}^2_{+}} D_x (\exp _x^{\tilde{g}})^{-1} (f(\omega ))\,d\mu _g(\omega ) \right) ^{-1}|_{x = C[f,\tilde{g}]}\nonumber \\&\quad \cdot \pi _{{\mathbb R}^2} \left( (\exp _x^{\tilde{g}})^{-1}(f) H - D \left( (\exp _x^{\tilde{g}})^{-1} \right) (f) \nu \right) |_{x = C[f,\tilde{g}]}. \end{aligned}$$
(5.3)

In the Euclidean case \(\tilde{g} = \delta \) we have \(\exp _x v = x+v\), which yields for \(i = 1,2\)

$$\begin{aligned} \pi _{{\mathbb R}^2} \int _{{\mathbb S}^2_{+}} D_x (\exp _x)^{-1}(f(\omega ))\,d\mu _g(\omega )= & {} - \mu _g({\mathbb S}^2_{+})\, \mathrm{Id}_{{\mathbb R}^2},\\ \mathrm{grad}_{L^2}\,C^i[f,\delta ]= & {} \frac{1}{\mu _g({\mathbb S}^2_{+})} \left\langle \nu - (f - C[f,\delta ]) H, e_i \right\rangle . \end{aligned}$$

Specializing further to \(f_0(\omega ) = \omega \), we see

$$\begin{aligned} \mathrm{grad}_{L^2}\,C^i[f_0,\delta ](\omega ) = - \frac{3}{2\pi } \langle \omega ,e_i \rangle . \end{aligned}$$
(5.4)

For \(w \in C^{k,\alpha }({\mathbb S}^2_{+})\) and \(\tilde{g} \in C^l(\overline{Z}_2,{\mathbb R}^{3 \times 3})\) where \(l \ge k+1\), one deduces \(\mathrm{grad}_{L^2} C^i[w,\tilde{g}] \in C^{k-2,\alpha }({\mathbb S}^2_{+})\). Moreover as a functional into \(C^{k-4,\alpha }({\mathbb S}^2_{+})\), it is of class \(C^{l-k+1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alessandroni, R., Kuwert, E. Local solutions to a free boundary problem for the Willmore functional. Calc. Var. 55, 24 (2016). https://doi.org/10.1007/s00526-016-0961-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-0961-3

Mathematics Subject Classification

Navigation