Skip to main content
Log in

On the rigidity theorems for Lagrangian translating solitons in pseudo-Euclidean space III

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let f be a smooth strictly convex solution of

$$\begin{aligned} \det \left( \frac{\partial ^{2}f}{\partial x_{i}\partial x_{j}}\right) =\exp \left\{ \sum _{i=1}^n- a_i\frac{\partial f}{\partial x_{i}} +\sum _{i=1}^n b_ix_i+c\right\} \end{aligned}$$

defined on \(\mathbb {R}^{n}\), where \(a_i\), \(b_i\) and c are constants, then the graph \(M_{\nabla f}\) of \(\nabla f\) is a space-like translating soliton for mean curvature flow in pseudo-Euclidean space \(\mathbb {R}^{2n}_{n}\) with the indefinite metric \(\sum dx_idy_i\). In this paper, we classify the entire solutions of the PDE above for dimension \(n=1\) and show every entire classical strictly convex solution \((n\ge 2)\) must be a quadratic polynomial under a decay condition on the hessian \((D^2f)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli, L., Li, Y.Y.: An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math. LVI, 549–583 (2003)

  2. Caffarelli, L., Li, Y.Y.: A Liouville theorem for solutions of the Monge-Ampère equation with periodic data. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 97–120 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Calabi E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan. Math. J. 5, 105–126 (1958)

  4. Chau, A., Chen, J.Y., Yuan, Y.: Rigidity of entire self-shrinking solutions to curvature flows. J. Reine Angew. Math. 664, 229–239 (2012)

    MATH  MathSciNet  Google Scholar 

  5. Cheng, S.Y., Yau, S.T.: Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math. 39, 839–866 (1986) No. 6

  6. Ding, Q., Xin, Y.L.: The rigidity theorems for Lagrangian self-shrinkers. J. Reine Angew. Math. 692, 109–123 (2014)

    MATH  MathSciNet  Google Scholar 

  7. Gutiérrez, C.E.: The Monge-Ampère Equation, Birkhäuser Boston (2001)

  8. Huang, R.L., Wang, Z.Z.: On the entire self-shrinking solutions to Lagrangian mean curvature flow. Calc. Var. 41, 321–339 (2011)

    Article  MATH  Google Scholar 

  9. Huang, R.L., Xu, R.W.: On the rigidity theorems for Lagrangian translating solitons in pseudo-Euclidean space II, Int. J. Math. doi:10.1142/S0129167X1550072X

  10. Jia, F., Li, A.-M.: Locally strongly convex hypersurfaces with constant affine mean curvature. Diff. Geom. Appl. 22, 199–214 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jörgens, K.: Über die Lösungen der Differentialgleichung rt-\(s^{2}\) =1. Math. Ann. 127, 130–134 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jost, J., Xin, Y.L.: Some aspects of the global geometry of entire space-like submanifold. Results Math. 40, 233–245 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Li, A.-M., Xu, R.W.: A rigidity theorem for affine Kähler-Ricci flat graph. Results Math. 56, 141–164 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Li, A.-M., Xu, R.W., Simon, U., Jia, F.: Affine Bernstein problems and Monge-Ampère equations. World Scientific Publishing Co., Singapore (2010)

    Book  MATH  Google Scholar 

  15. Pogorelov, A.V.: On the improper convex affine hyperspheres. Geom. Dedicata 1, 33–46 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pogorelov, A.V.: The Minkowski multidimensional problem. Wiley, New York (1978)

    MATH  Google Scholar 

  17. Xin, Y.L.: Minimal submanifolds and related topics, World Scientific Publishing (2003)

  18. Xu, R.W., Huang, R.L.: On the rigidity theorems for Lagrangian translating solitons in pseudo-Euclidean space I. Acta. Math. Sinica (English series) 29(7), 1369–1380 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiwei Xu.

Additional information

Communicated by J. Jost.

Research supported by NSFC (No. 11101129, 11171091, 11471225) and partially supported by IRTSTHN (14IRTSTHN023).

Appendix

Appendix

Proposition 5.1

Let f be an entire smooth strictly convex solution of (1.3) \((n\ge 2)\). If the function \(\Phi \) has an upper bound, then the graph hypersurface \(M=\{(x, f(x))\}\) is complete with respect to the Calabi metric.

Proof

Let \(p\in M\) be any fixed point. Up to an affine transformation of \(\mathbb {R}^{n+1}\), we may assume that p has coordinates \((0,\ldots ,0,0)\) and

$$\begin{aligned} f(0)=0,\;\;\;\;\frac{\partial f}{\partial x^i}(0)=0,\;\;\;\;1\le i\le n. \end{aligned}$$

The key point of the proof of Proposition 5.1 is to estimate \(\frac{\Vert \nabla f\Vert ^2}{\left( 1+f\right) ^{2}}\). We shall show that it is bounded if \(\Phi \) is bounded. To estimate \(\frac{\Vert \nabla f\Vert ^2}{\left( 1+f\right) ^{2}}\), we consider the following function

$$\begin{aligned} F(x):=\exp \left\{ \frac{-m}{C-f}+\Psi \right\} \frac{\Vert \nabla f\Vert ^2}{\left( 1+f\right) ^{2}} \end{aligned}$$
(5.1)

defined on the section

$$\begin{aligned} S_{f}(0,C):=\left\{ x\in R^n\;\big |\; f(x)<C\right\} , \end{aligned}$$

where

$$\begin{aligned} \Psi :=\exp \{\Phi \}, \end{aligned}$$

and m is a positive constant to be determined later. Clearly, F attains its supremum at some interior point \(p^*\) of \(S_{f}(0,C)\). We can assume that \(\Vert \nabla f\Vert >0\) at \(p^*\). Choose a local orthonormal frame field of the Calabi metric \(e_1,\ldots ,e_n\) on M such that, at \(p^*,\;f_{,1}=\Vert \nabla f\Vert >0,\;f_{,i}=0\;(i\ge 2)\). Then, at \(p^*\),

$$\begin{aligned} F_{,i}=0, \end{aligned}$$
(5.2)
$$\begin{aligned} \sum F_{,ii}\le 0. \end{aligned}$$
(5.3)

Now we calculate both expressions (5.2) and (5.3) explicitly. By (5.2) and (5.3), we have

$$\begin{aligned} 2\sum _j f_{,j}f_{,ji}+\left( -g f_{,i}-2\frac{f_{,i}}{1+f}+\Psi _{,i}\right) \sum _j (f_{,j})^2=0, \end{aligned}$$
(5.4)
$$\begin{aligned} 2 \sum _{i,j} (f_{,ij})^2+2\sum f_{,j}f_{,jii}+2\sum _{i,j} \left( -g f_{,i}-2\frac{f_{,i}}{1+f}+ \Psi _{,i}\right) f_{,j}f_{,ji} \end{aligned}$$
$$\begin{aligned} +\left[ -g^{\prime }\sum (f_{,i})^{2}-g \Delta f+ 2\frac{\sum (f_{,i})^2}{(1+f)^{2}}-2\frac{\Delta f}{1+f} +\Delta \Psi \right] \sum _j (f_{,j})^{2}\le 0, \end{aligned}$$
(5.5)

where

$$\begin{aligned} g:=\frac{m}{(C-f)^2},\quad \quad g^\prime :=\frac{2m}{(C-f)^3}. \end{aligned}$$

Let us simplify (5.5). From (5.4) we have

$$\begin{aligned} 2f_{,1i}=\left( g f_{,i}+2\frac{f_{,i}}{1+f} -\Psi _{,i}\right) f_{,1}. \end{aligned}$$
(5.6)

Applying the inequality of Schwarz, we get

$$\begin{aligned} 2\sum (f_{,ij})^2\ge 2\left( \frac{n}{n-1}-\delta \right) (f_{,11})^2+4\sum _{i>1}(f_{,1i})^2-\frac{2}{\delta (n-1)^2}(\Delta f)^2, \end{aligned}$$
(5.7)

for any \(0<\delta <1\). We insert (5.6) and (5.7) into (5.5) and obtain

$$\begin{aligned}&\left[ 2\left( \frac{n}{n-1}-\delta \right) -4\right] (f_{,11})^2+2\sum f_{,j}f_{,jii}-\frac{2}{\delta (n-1)^2}(\Delta f)^2\nonumber \\&\quad +\left[ -g^{\prime }(f_{,1})^2-g\Delta f +2\frac{(f_{,1})^{2}}{(1+f)^{2}}-2\frac{\Delta f}{1+f}+\Delta \Psi \right] (f_{,1})^2\le 0. \end{aligned}$$
(5.8)

Now we calculate \(\Delta \Psi \). From Proposition 3.1 we obtain

$$\begin{aligned} \Delta \Phi \ge \frac{\delta }{\rho ^2}\sum (\rho _{,ij})^2 - C. \end{aligned}$$
(5.9)

Then we get

$$\begin{aligned} \Psi _{,i}=\Psi \Phi _{,i}, \end{aligned}$$
(5.10)

and

$$\begin{aligned} \Delta \Psi \ge \Psi \sum (\Phi _{,i})^2 + \Psi \frac{\delta }{\rho ^2}\sum (\rho _{,ij})^2 - C. \end{aligned}$$
(5.11)

Let us now compute the term \(\sum f_{,j}f_{,jii}\) in (5.8). An application of the Ricci identity shows that

$$\begin{aligned} 2\sum _{i,j} f_{,j}f_{,jii}=2\sum _{j} f_{,j}(\Delta f)_{,j}+2\sum _{i,j} R_{ij}f_{,i}f_{,j}. \end{aligned}$$

Note

$$\begin{aligned} \Delta f=n+\frac{n+2}{2} \sum (\log \rho )_{,i}f_{,i}, \end{aligned}$$

we get

$$\begin{aligned} 2\sum&f_{,j}f_{,jii}=(n+2)\sum _{i,j}\left( f_{,ij}\frac{\rho _{,i}}{\rho }+ f_{,i}\frac{\rho _{,ij}}{\rho }- f_{,i}\frac{\rho _{,i}\rho _{,j}}{\rho ^2}\right) f_{,j}+2 R_{11}(f_{,1})^2 \nonumber \\&=(n+2)\left( \frac{\rho _{,11}}{\rho }(f_{,1})^2- \frac{(\rho _{,1})^2}{\rho ^2}(f_{,1})^2 +\sum _i f_{,1i}f_{,1}\frac{\rho _{,i}}{\rho }-\sum _k A_{11k}\frac{\rho _{k}}{\rho }(f_{,1})^2\right) \nonumber \\&\quad +2\sum _{m,l} A_{ml1}^2(f_{,1})^2 \nonumber \\&\ge (n+2)\frac{\rho _{,11}}{\rho }(f_{,1})^2- C(n,\delta ) \Phi (f_{,1})^2 \nonumber \\&\quad -\delta \sum (f_{,1i})^2 +(2-\delta )\sum A_{ml1}^2(f_{,1})^2, \end{aligned}$$
(5.12)

where \(\delta \) is a positive constant as before, and \(C(n,\delta )\) is a positive constant depending only on n and \(\delta \). From the structure equation we get

$$\begin{aligned} f_{,ij}=f_{ij}+A_{ij1}f_{,1}, \end{aligned}$$

and

$$\begin{aligned} \sum _{i,j} (f_{,ij})^2=\sum _{i,j} A_{ij1}^2f_{,1}^2+n+(n+2)\frac{\rho _{,1}f_{,1}}{\rho }. \end{aligned}$$
(5.13)

A combination of (5.7) and (5.13) gives

$$\begin{aligned} 2\sum f_{,j}f_{,jii}\ge&(2-6\delta )\sum (f_{,1i})^2-\frac{2}{\delta (n-1)}(\Delta f)^2 \nonumber \\&+(n+2)\frac{\rho _{,11}}{\rho }(f_{,1})^2-C(n,\delta ) \Phi (f_{,1})^2-2n\nonumber \\ \ge&(2-6\delta )\sum (f_{,1i})^2-\frac{2}{\delta (n-1)}(\Delta f)^2-\delta \Psi \sum \frac{(\rho _{,ij})^2}{\rho ^2}(f_{,1})^2\nonumber \\&-\frac{(n+2)^2}{4\delta }(f_{,1})^2- C(n,\delta ) \Phi (f_{,1})^2-2n. \end{aligned}$$
(5.14)

We insert (5.11), (5.14) into (5.8) and use (5.6):

$$\begin{aligned}&\left( \frac{1}{2(n-1)}{-}2\delta \right) \left( g f_{,1}+2\frac{f_{,1}}{1+f}{-}\Psi _{,1}\right) ^2(f_{,1})^2 {-}\frac{4}{(n{-}1)\delta }(\Delta f)^2{-} C(n,\delta )\Phi (f_{,1})^2\nonumber \\&\quad - \frac{(n+2)^2}{4\delta }(f_{,1})^2+\Psi \sum (\Phi _{,i})^2(f_{,1})^2-C(n,\delta )(f_{,1})^2-2n\nonumber \\&\quad +\left[ -g^{\prime }(f_{,1})^{2}-g \Delta f +2\frac{(f_{,1})^{2}}{(1+f)^{2}}-2\frac{\Delta f}{1+f}\right] (f_{,1})^{2} \le 0. \end{aligned}$$
(5.15)

We choose the following values for \(\delta \) and m:

$$\begin{aligned} \delta :=\frac{1}{16(n-1)},\quad \quad m:=40\left( 3n+\exp \{N\}\right) C, \end{aligned}$$

where N is an upper bound of \(\Phi \) on \(\mathbb {R}^n\). To simplify the expression we denote

$$\begin{aligned} a_1:=\frac{1}{2(n-1)}-2\delta ,\;\;\;\;a_2:=\frac{4}{(n-1)\delta }, \end{aligned}$$
$$\begin{aligned} a_3:= C(n,\delta )N +\frac{(n+2)^2}{4\delta }+ C(n,\delta ),\quad a_4:=\frac{a_1}{1+a_1\exp \{N\}}. \end{aligned}$$

Recall that \(\Psi _{,i}=\Psi \Phi _{,i}\). Then

$$\begin{aligned} a_1\left( gf_{,1}+2\frac{f_{,1}}{1+f}-\Psi _{,1}\right) ^2+ \Psi \sum (\Phi _{,i})^2 \ge a_4\left( g f_{,1}+ 2\frac{f_{,1}}{1+f}\right) ^2. \end{aligned}$$
(5.16)

Inserting (5.16) into (5.15) we get

$$\begin{aligned}&a_4\left( g f_{,1}+2\frac{f_{,1}}{1+f}\right) ^{2} (f_{,1})^{2}-a_2(\Delta f)^2-a_3 (f_{,1})^2\nonumber \\&\quad +\left( -g^{\prime } (f_{,1})^2-g\Delta f+2\frac{(f_{,1})^2}{(1+f)^{2}}-2\frac{\Delta f}{1+f}\right) (f_{,1})^{2}-2n\le 0. \end{aligned}$$
(5.17)

Multiply both sides of (5.17) by \(\frac{1}{(1+f)^{2}}\). Then we obtain

$$\begin{aligned}&a_4\left( g f_{,1}+ 2 \frac{f_{,1}}{1+f}\right) ^2 \frac{(f_{,1})^2}{(1+f)^{2}}-a_2 \left( \frac{\Delta f}{1+f}\right) ^2-a_3 \frac{(f_{,1})^2}{(1+f)^{2}}-g^{\prime } \frac{(f_{,1})^4}{(1+f)^{2}}\nonumber \\&\quad -g \Delta f \frac{(f_{,1})^2}{(1+f)^{2}} +2\frac{(f_{,1})^4}{(1+f)^{4}}-2 \left( \frac{\Delta f}{1+f}\right) \frac{(f_{,1})^2}{(1+f)^{2}}-2n\le 0. \end{aligned}$$
(5.18)

Using \(g'\le \frac{a_4}{20}g^2\), to further estimate (5.18), we have the following three inequalities:

$$\begin{aligned} g^{\prime }\frac{(f_{,1})^4}{(1+f)^{2}}\le & {} \frac{a_4}{10} \left( gf_{,1}+2\frac{f_{,1}}{1+f}\right) ^{2} \frac{(f_{,1})^2}{(1+f)^{2}},\\ \left( \frac{\Delta f}{1+f}\right) ^2\le & {} 2n^2+2n^2\Phi \frac{(f_{,1})^2}{(1+f)^2},\\ 2 \left( \frac{\Delta f}{1+f}\right) \frac{(f_{,1})^2}{(1+f)^2}\le & {} 2n \frac{(f_{,1})^2}{(1+f)^2}+\frac{(f_{,1})^4}{(1+f)^4}+ n^2\Phi \frac{(f_{,1})^2}{(1+f)^2}. \end{aligned}$$

We use the inequality of Schwarz and obtain

$$\begin{aligned} g\Delta f \frac{(f_{,1})^2}{(1+f)^{2}}&=ng\frac{(f_{,1})^2}{(1+f)^{2}} +\frac{n+2}{2}g\frac{\rho _{,1}}{\rho } \frac{(f_{,1})^3}{(1+f)^{2}}\\&\le \frac{5n^2}{2a_4}+\frac{a_4}{10}g^2\frac{(f_{,1})^4}{(1+f)^{4}}+ \frac{10(n+2)^2}{16a_4}\Phi \frac{(f_{,1})^2}{(1+f)^{2}}+\frac{a_4}{10}g^2 \frac{(f_{,1})^4}{(1+f)^{2}}\\&\le \frac{a_4}{5} \left( g f_{,1}+2\frac{f_{,1}}{1+f}\right) ^2 \frac{(f_{,1})^2}{(1+f)^{2}}+\frac{5n^2}{2a_4} +\frac{5n^2}{2a_4}\Phi \frac{(f_{,1})^2}{(1+f)^{2}}. \end{aligned}$$

We insert these inequalities into (5.18) and get

$$\begin{aligned} \frac{(f_{,1})^4}{(1+f)^{4}} -a\frac{(f_{,1})^2}{(1+f)^{2}}-b\le 0, \end{aligned}$$
(5.19)

where we use the abbreviations:

$$\begin{aligned} a:=\left( 2n^2a_2+ \frac{5n^2}{2a_4}+n^2\right) N+2n+a_3, \quad b:=2n^2a_2+\frac{5n^2}{2a_4}+2n. \end{aligned}$$

The left hand term in (5.19) is a quadratic expression in \(\frac{(f_{,1})^2}{(1+f)^{2}}\). If one considers its zeroes it follows that

$$\begin{aligned} \frac{(f_{,1})^2}{(1+f)^{2}}\le a+\sqrt{b}. \end{aligned}$$

Thus from (5.1) we get, with our special choice of \(\delta \) and m:

$$\begin{aligned} F\le \exp \{\exp \{N\}\}(a+\sqrt{b}), \end{aligned}$$

which holds at \(p^*\), where F attains its supremum. Hence, at any interior point of \(S_f(0,C)\), we have

$$\begin{aligned} \frac{\Vert \nabla f\Vert ^2}{(1+f)^{2}}\le \exp \{\exp \{N\}\}(a+\sqrt{b})\exp \left\{ \frac{40(3n+\exp \{N\})C}{C-f}\right\} . \end{aligned}$$
(5.20)

Let \(C\rightarrow \infty \) then

$$\begin{aligned} \frac{\Vert \nabla f\Vert ^2}{(1+f)^{2}}\le \exp \left\{ \exp \{N\}+40(3n+\exp \{N\})\right\} (a+\sqrt{b}):=Q, \end{aligned}$$
(5.21)

where Q is a constant.

Using the gradient estimate (5.21) we can prove that M is complete with respect to the Calabi metric, namely: for any unit speed geodesic, starting from p,

$$\begin{aligned} \sigma :[0,S]\rightarrow M \end{aligned}$$

we have

$$\begin{aligned} \frac{df}{ds}\le \Vert \nabla f\Vert \le \sqrt{Q}(1+f). \end{aligned}$$

It follows that

$$\begin{aligned} s\ge \frac{1}{\sqrt{Q}}\int ^{x_{n+1}(\sigma (S))}_{0}\frac{df}{1+f}. \end{aligned}$$
(5.22)

Since

$$\begin{aligned} \int ^{\infty }_{0}\frac{df}{1+f}=\infty \end{aligned}$$

and \(f:\Omega \rightarrow \mathbb R\) is proper (i.e., the inverse image of any compact set is compact), (5.22) implies that M is complete with respect to the Calabi metric. This completes the proof of Proposition 5.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Zhu, L. On the rigidity theorems for Lagrangian translating solitons in pseudo-Euclidean space III. Calc. Var. 54, 3337–3351 (2015). https://doi.org/10.1007/s00526-015-0905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0905-3

Keywords

Mathematics Subject Classification

Navigation