Skip to main content
Log in

On positive solutions for (pq)-Laplace equations with two parameters

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the existence and non-existence of positive solutions for the (pq)-Laplace equation \(-\Delta _p u -\Delta _q u=\alpha |u|^{p-2}u+\beta |u|^{q-2}u\), where \(p \ne q\), under the zero Dirichlet boundary condition in \(\Omega \). The main result of our research is the construction of a continuous curve in \((\alpha ,\beta )\) plane, which becomes a threshold between the existence and non-existence of positive solutions. Furthermore, we provide the example of domains \(\Omega \) for which the corresponding first Dirichlet eigenvalue of \(-\Delta _p\) is not monotone w.r.t. \(p > 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allegretto, W., Huang, Y.-X.: A Picone’s identity for the \(p\)-Laplacian and applications. Nonlinear Anal. Theory Methods Appl. 32(7), 819–830 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anane, A.: Simplicité et isolation de la premiere valeur propre du \(p\)-Laplacien avec poids. Comptes rendus de l’Acad. des Sci. Sér. 1 Math. 305(16), 725–728 (1987)

  3. Benedikt, J., Drábek, P.: Estimates of the principal eigenvalue of the \(p\)-Laplacian. J. Math. Anal. Appl. 393(1), 311–315 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benouhiba, N., Belyacine, Z.: A class of eigenvalue problems for the \((p, q)\)-Laplacian in \(R^n\). Int. J. Pure Appl. Math. 50, 727–737 (2012)

    Google Scholar 

  5. Benouhiba, N., Belyacine, Z.: On the solutions of the \((p, q)\)-Laplacian problem at resonance. Nonlinear Anal. TMA 77, 74–81 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bobkov, V., Il’yasov, Y.: Maximal existence domains of positive solutions for two-parametric systems of elliptic equations (2014). arXiv:1406.5275

  7. Cherfils, L., Il’Yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with \(p\)&\(q\)-Laplacian. Commun. Pure Appl. Math. 4(1), 9–22 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Cuesta, M., De Figueiredo, D., Gossez, J.-P.: The beginning of the Fučik spectrum for the \(p\)-Laplacian. J. Differ. Equ. 159(1), 212–238 (1999)

    Article  MATH  Google Scholar 

  9. Drábek, P., Milota, J.: Methods of Nonlinear Analysis: Applications to Differential Equations. Springer, New York (2013)

    Book  Google Scholar 

  10. Gongbao, L., Guo, Z.: Multiple solutions for the \(p\)&\(q\)-Laplacian problem with critical exponent. Acta Math. Sci. 29(4), 903–918 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Huang, Y.: On the eigenvalues of the \(p\)-Laplacian with varying \(p\). Proc. Am. Math. Soc. 125(11), 3347–3354 (1997)

    Article  MATH  Google Scholar 

  12. Il’yasov, Y.: On positive solutions of indefinite elliptic equations. Comptes Rendus de l’Acad. des Sci.-Ser. I-Math. 333(6), 533–538 (2001)

    MATH  MathSciNet  Google Scholar 

  13. Ilasov, Y.S.: Bifurcation calculus by the extended functional method. Funct. Anal. Appl. 41(1), 18–30 (2007)

    Article  MathSciNet  Google Scholar 

  14. Kajikiya, R., Tanaka, M., Tanaka, S.: Bifurcation of positive solutions for the one dimensional \((p, q)\)-Laplace equation. (submitted)

  15. Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the \(p\)-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carol. 44(4), 659–667 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. Theory Methods Appl. 12(11), 1203–1219 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lieberman, G.M.: The natural generalizationj of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16(2–3), 311–361 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

  19. Mihailescu, M.: An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Commun. Pure Appl. Anal. 10, 701–708 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Miyajima, S., Motreanu, D., Tanaka, M.: Multiple existence results of solutions for the Neumann problems via super-and sub-solutions. J. Funct. Anal. 262(4), 1921–1953 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Motreanu, D., Tanaka, M.: On a positive solution for \((p, q)\)-Laplace equation with indefinite weight. Minimax Theory Appl. (to appear)

  22. Pucci, P., Serrin, J.: The Maximum Principle, vol. 73. Springer, New York (2007)

    MATH  Google Scholar 

  23. Ramos Quoirin, H.: An indefinite type equation involving two \(p\)-Laplacians. J. Math. Anal. Appl. 387(1), 189–200 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tanaka, M.: Generalized eigenvalue problems for \((p, q)\)-Laplacian with indefinite weight. J. Math. Anal. Appl. 419(2), 1181–1192 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tanaka, M.: Uniqueness of a positive solution and existence of a sign-changing solution for \((p, q)\)-Laplace equation. J. Nonlinear Funct. Anal. 2014, 1–15 (2014)

    Google Scholar 

  26. Yin, H., Yang, Z.: Multiplicity of positive solutions to a \(p-q\)-Laplacian equation involving critical nonlinearity. Nonlinear Anal. Theory Methods Appl. 75(6), 3021–3035 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zeidler, E.: Nonlinear Functional Analysis and its Application III: Variational Methods and Optimization. Springer, New York (1985)

    Book  Google Scholar 

Download references

Acknowledgments

The first author was partially supported by the Russian Foundation for Basic Research (Project Nos. 13-01-00294 and 14-01-31054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieko Tanaka.

Additional information

Communicated by P. Rabinowitz.

Appendices

Appendix A: The Picone identity for the (pq)-Laplacian

In this section we prove the variant of Picone’s-type identity (cf. [1]), which turns to be useful for problems with (pq)-Laplacian.

First we prepare one auxiliary result. Denote

$$\begin{aligned} g(p,q;t):=\frac{(p-1) t^{p-2} + (q-1) t^{q-2}}{(p-1) \left( t^{p-1} + t^{q-1}\right) ^{\frac{p-2}{p-1}}}. \end{aligned}$$
(9.1)

Lemma 9

Let \(1<q,p<\infty \). Then \(\inf _{t>0} g(p,q; t) > 0\).

Proof

Let us denote \(\widetilde{m} := \min \{p-1,q-1\}\). By standard calculations we get

$$\begin{aligned} g(p,q;t)&= \frac{(p-1) t^{p-2} + (q-1) t^{q-2}}{(p-1) (t^{p-1} + t^{q-1})^{\frac{p-2}{p-1}}} = \frac{\widetilde{m} t^{p-2}\left( \frac{p-1}{\widetilde{m}} + \frac{q-1}{\widetilde{m}} t^{q-p}\right) }{(p-1) t^{p-2} (1 + t^{q-p})^{\frac{p-2}{p-1}}} \\&\ge \frac{\widetilde{m} (1 + t^{q-p})}{(p-1) (1 + t^{q-p})^{\frac{p-2}{p-1}}} = \frac{\widetilde{m}}{p-1}(1 + t^{q-p})^{\frac{1}{p-1}} > \frac{\widetilde{m}}{p-1} > 0 \end{aligned}$$

for all \(t > 0\), which completes the proof.

Proposition 8

Let \(1<q<p<\infty \). Then there exists \(\rho > 0\) such that for any differentiable functions \(u > 0\) and \(\varphi \ge 0\) in \(\Omega \) it holds

$$\begin{aligned} (|\nabla u|^{p-2} + |\nabla u|^{q-2} ) \nabla u \nabla \left( \frac{\varphi ^p}{u^{p-1} + u^{q-1}} \right) \le \frac{|\nabla \varphi |^p + |\nabla (\varphi ^{p/q})|^q}{\rho }. \end{aligned}$$
(9.2)

Proof

First, by standard calculations we get

$$\begin{aligned}&|\nabla u|^{p-2} \nabla u \nabla \left( \frac{\varphi ^p}{u^{p-1} + u^{q-1}} \right) \nonumber \\&\quad = p |\nabla u|^{p-2} \nabla u \nabla \varphi \frac{\varphi ^{p-1}}{u^{p-1} + u^{q-1}} - |\nabla u|^{p} \varphi ^p \frac{(p-1) u^{p-2} + (q-1) u^{q-2}}{(u^{p-1} + u^{q-1})^2} \nonumber \\&\quad \le p |\nabla u|^{p-1} |\nabla \varphi | \frac{\varphi ^{p-1}}{u^{p-1} + u^{q-1}} - |\nabla u|^{p} \varphi ^p \frac{(p-1) u^{p-2} + (q-1) u^{q-2}}{(u^{p-1} + u^{q-1})^2} \end{aligned}$$
(9.3)

in \(\Omega \). Applying to the first term Young’s inequality

$$\begin{aligned} ab =\frac{a}{\rho ^{\frac{p-1}{p}}}\,\rho ^{\frac{p-1}{p}} b \le \frac{|a|^p}{p\rho ^{p-1}} + \frac{\rho (p-1) |b|^{\frac{p}{p-1}}}{p} \end{aligned}$$

with \(a= |\nabla \varphi |\), \(b= |\nabla u|^{p-1} \frac{\varphi ^{p-1}}{u^{p-1} + u^{q-1}}\) and any \(\rho >0\), we obtain

$$\begin{aligned} (9.3)&\le \frac{|\nabla \varphi |^p}{\rho ^{p-1}} + \frac{\rho (p-1) |\nabla u|^{p} \varphi ^p}{( u^{p-1} + u^{q-1} )^{\frac{p}{p-1}}} - |\nabla u|^{p} \varphi ^p \frac{(p-1) u^{p-2} + (q-1) u^{q-2}}{(u^{p-1} + u^{q-1})^2} \\&= \frac{|\nabla \varphi |^p}{\rho ^{p-1}} + \frac{\rho (p-1) |\nabla u|^{p} \varphi ^p}{( u^{p-1} + u^{q-1} )^{\frac{p}{p-1}}} \left[ 1 - \frac{(p-1) u^{p-2} + (q-1) u^{q-2}}{\rho (p-1) (u^{p-1} + u^{q-1})^{\frac{p-2}{p-1}}} \right] \\&= \frac{|\nabla \varphi |^p}{\rho ^{p-1}} + \frac{\rho (p-1) |\nabla u|^{p} \varphi ^p}{( u^{p-1} + u^{q-1} )^{\frac{p}{p-1}}} \left[ 1 - \frac{g(p,q;u)}{\rho }\right] \end{aligned}$$

in \(\Omega \), where g(pqt) is defined by (9.1). Since Lemma 9 implies that \(\inf _{t>0} g(p,q;t)\) is positive, we can choose \(\rho _1 > 0\) small enough to satisfy \(\inf _{t>0} g(p,q;t) \ge \rho _1\). This yields \([1-g(p,q;u)/\rho _1] \le 0\) in \(\Omega \), and therefore

$$\begin{aligned} |\nabla u|^{p-2} \nabla u \nabla \left( \frac{\varphi ^p}{u^{p-1} + u^{q-1}} \right) \le \frac{|\nabla \varphi |^p}{\rho _1^{p-1}} \quad \mathrm{in}\ \Omega . \end{aligned}$$
(9.4)

Similarly, if we choose \(\rho _2 > 0\) satisfying \(\inf _{t>0} g(q,p;t) \ge \rho _2\), then for \(\psi =\varphi ^{p/q}\) (note \(p/q>1\) and \(\varphi ^p=\psi ^q\)) we obtain

$$\begin{aligned}&|\nabla u|^{q-2} \nabla u \nabla \left( \frac{\psi ^q}{u^{p-1} + u^{q-1}} \right) \nonumber \\&\quad \le \frac{|\nabla \psi |^q}{\rho _2^{q-1}} + \frac{\rho _2 (q-1) |\nabla u|^{q} \psi ^q}{( u^{p-1} + u^{q-1} )^{\frac{q}{q-1}}} \left[ 1 - \frac{g(q,p;u)}{\rho _2}\right] \le \frac{|\nabla \psi |^q}{\rho _2^{q-1}}. \end{aligned}$$
(9.5)

Combining now (9.4) with (9.5) and taking \(\rho := \min \{ \rho _1^{p-1}, \rho _2^{q-1} \}\) we establish the formula (9.2).

Appendix B: Non-monotonicity of \(\lambda _1(p)\) with respect to p

The main aim of this section is to provide sufficient conditions for \(\lambda _1(p)\) to be a non-monotone function w.r.t. p.

Throughout this section, we write \(\lambda _1(p, \Omega )\) to reflect the dependence of the first eigenvalue \(\lambda _1(p)\) on the domain \(\Omega \), on which it is defined.

By \(B_R\) we denote an open ball in \(\mathbb {R}^N\) of radius R. We don’t fix the center of \(B_R\) and write \(B_R \subset \Omega \) (\(\Omega \subset B_R\)) if such center exists.

Proposition 9

Assume that \(r, R \in (1, e)\) and a domain \(\Omega \subset \mathbb {R}^N\) \((N \ge 2)\) satisfy

$$\begin{aligned} \max \{1,e\ln R\}<r\le R<e \quad \mathrm{and} \quad B_{r} \subset \Omega \subset B_R. \end{aligned}$$

Then, the function \(\lambda _1(p, \Omega )\) w.r.t. p has a maximum point \(p^*>1\), and hence it is non-monotone.

In particular, if \(\Omega =B_R\) with \(R \in (1,e)\), then \(\lambda _1(p,\Omega )\) is non-monotone w.r.t. p.

Proof

Note that \(\lambda _1(p, \Omega )\) is a continuous function w.r.t. p (see [11, Theorem 2.1]). Hence, to prove that \(\lambda _1(p, \Omega )\) possesses a maximum point \(p^* > 1\) it is sufficient to show the existence of \(p_0 > 1\) such that

$$\begin{aligned} \lambda _1(p_0, \Omega ) > \max \left\{ \lim _{p \rightarrow 1+0} \lambda _1(p, \Omega ), \lim _{p \rightarrow \infty } \lambda _1(p, \Omega )\right\} . \end{aligned}$$
(10.1)

First we find the corresponding limits. On the one hand, [11, Theorem 3.1] and [3, Corollary 5] yield that if there exists \(r > 1\) such that \(B_r \subset \Omega \), then

$$\begin{aligned} \lim _{p \rightarrow \infty } \lambda _1(p, \Omega ) = 0. \end{aligned}$$
(10.2)

On the other hand, it is proved in [15, Corollary 6] that

$$\begin{aligned} \lim _{p \rightarrow 1+0} \lambda _1(p, \Omega ) = h(\Omega ), \end{aligned}$$
(10.3)

where \(h(\Omega )\) is the so-called Cheeger constant defined by

$$\begin{aligned} h(\Omega ) := \inf _{D \subset \Omega } \frac{|\partial D|}{|D|}. \end{aligned}$$

Here \(|\partial D|\) and |D| are \((N-1)\)- and N-dimensional Lebesgue measure of \(\partial D\) and D, respectively. Note that Cheeger’s constant is known explicitly for some domains; for instance, \(B_r\) has \(h(B_r) = \frac{N}{r}\) (see [15]).

Now to get (10.1) we use the following estimation from [3, Theorem 2], which holds for any \(\Omega \subset B_R\):

$$\begin{aligned} \lambda _1(p, \Omega ) \ge \frac{N p}{R^p}. \end{aligned}$$
(10.4)

Simple analysis of the function \(y(p) = \frac{N p}{R^p}\) shows that if \(R \in (1, e)\) then there exists a unique maximum point \(p_0 = \frac{1}{\ln R} > 1\) of y(p), and \(y(p_0) = \frac{N}{e \ln R}\).

Let us show now the existence of \(r, R \in (1, e)\) such that for any \(\Omega \) with \(B_r \subset \Omega \subset B_R\) it holds \(y(p_0) > h(\Omega )\). Then (10.2)–(10.4) will imply (10.1), which proves the assertion of the proposition.

From the monotonicity of Cheeger’s constant with respect to a domain (see [15, Remark 11]) it follows that \(h(B_r) \ge h(\Omega )\), whenever \(B_r \subset \Omega \). Therefore, it is enough to show that

$$\begin{aligned} y(p_0) = \frac{N}{e \ln R} > \frac{N}{r} = h(B_r) \end{aligned}$$
(10.5)

holds for some \(r, R \in (1, e)\) with \(r<R\). Inequality (10.5) is read as \(r > e \ln R\). It is not hard to see that for any fixed \(R \in (1, e)\) we have \(\max \{1,e\ln R\}<R\), since the function \(\ln t/t\) (\(t>0\)) has the maximum value 1 / e only at \(t=e\).

Thus, for any \(r, R \in (1, e)\) and \(\Omega \in \mathbb {R}^N\) such that

$$\begin{aligned} \max \{1,e\ln R\}<r\le R<e \quad \mathrm{and} \quad B_{r} \subset \Omega \subset B_R, \end{aligned}$$

the inequality (10.1) is satisfied for some \(p_0 > 1\), and this completes the proof.

Appendix C: Violation of the assumption (LI)

In this section we give a short one-dimensional example indicating that, in general, the first eigenvalues \(\lambda _1(p, m_p)\) and \(\lambda _1(q, m_q)\) of zero Dirichlet \(-\Delta _p\) and \(-\Delta _q\) on \(\Omega \) with weights \(m_p\) and \(m_q\), respectively, can have the same eigenspace, that is, \(\varphi _1(p, m_p) \equiv k \varphi _1(q, m_q)\) in \(\Omega \) for some \(k \ne 0\).

Let u be a positive \(C^2\)-solution of

$$\begin{aligned} \left\{ \begin{array}{ll} -u'' = |u|^{p-2}\, u &{}\quad \mathrm{in}\ (0, \pi ), \\ u(0) = u(\pi ) = 0,&{} \end{array} \right. \end{aligned}$$

where \(p > 2\). Existence and regularity of such a solution is a classical example in various textbooks on nonlinear analysis (see, e.g., [9, Example 7.4.7, p. 485]).

It is easy to see, that u is also the first eigenfunction of zero Dirichlet \(-\Delta \) on \((0, \pi )\) with the weight function \(m_2(x) = |u(x)|^{p-2}\), with the corresponding eigenvalue \(\lambda _1(2, m_2) =1\). Note that \(m_2 > 0\) in \((0, \pi )\) and \(m_2 \in L^{\infty }[0, \pi ]\), since \(p > 2\).

At the same time, u becomes the first eigenfunction of \(-\Delta _p\) on \((0, \pi )\) with weight \(m_p(x) = (p-1) |u'(x)|^{p-2}\), with the eigenvalue \(\lambda _1(p, m_p) =1\). Indeed,

$$\begin{aligned} \left\{ \begin{aligned} -(|u'|^{p-2} u')'&\equiv -(p-1)|u'|^{p-2} u'' \\&= (p-1) |u'|^{p-2} |u|^{p-2} u = m_p(x) |u|^{p-2} u \quad \mathrm{in}\ (0, \pi ), \\ u(0) = u(\pi )&= 0. \end{aligned} \right. \end{aligned}$$

Moreover, \(m_p \in L^{\infty }[0, \pi ]\), since \(p > 2\) and \(u \in C^2[0, \pi ]\), and \(m_p \ge 0\) in \([0, \pi ]\).

Therefore, \(\lambda _1(2, m_2)\) and \(\lambda _1(p, m_p)\) have the same eigenspace, i.e. (LI) is violated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, V., Tanaka, M. On positive solutions for (pq)-Laplace equations with two parameters. Calc. Var. 54, 3277–3301 (2015). https://doi.org/10.1007/s00526-015-0903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0903-5

Mathematics Subject Classification

Navigation