Skip to main content
Log in

Standing waves for a class of Kirchhoff type problems in \({\mathbb {R}^3}\) involving critical Sobolev exponents

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We are concerned with the following Kirchhoff type equation with critical nonlinearity:

$$\begin{aligned} \left\{ \begin{array}{ll} - \Bigl ( {{\varepsilon ^2}a + \varepsilon b\int _{{\mathbb {R}^3}} {{{| {\nabla u} |}^2}} } \Bigr )\Delta u + V(x)u = \lambda {| u |^{p - 2}}u + {| u |^4}u{\text { in }}{\mathbb {R}^3}, \\ u > 0,u \in {H^1}({\mathbb {R}^3}), \\ \end{array} \right. \end{aligned}$$

where \(\varepsilon \) is a small positive parameter, \(a,b>0\), \(\lambda > 0\), \(2 < p \le 4\). Under certain assumptions on the potential V, we construct a family of positive solutions \({u_\varepsilon } \in {H^1}({\mathbb {R}^3})\) which concentrates around a local minimum of V as \(\varepsilon \rightarrow 0\). Although, critical growth Kirchhoff type problem

$$\begin{aligned} \left\{ \begin{array}{ll} - \Bigl ( {{\varepsilon ^2}a + \varepsilon b\int _{{\mathbb {R}^3}} {{{| {\nabla u} |}^2}} } \Bigr )\Delta u + V(x)u = f(u)+{u^5}{\text { in }}{\mathbb {R}^3}, \\ u > 0,u \in {H^1}({\mathbb {R}^3}) \\ \end{array} \right. \end{aligned}$$

has been studied in e.g. He et al. [18], where the assumption for f(u) is that \(f(u) \sim |u{|^{p - 2}}u\) with \(4 < p < 6\) and satisfies the Ambrosetti-Rabinowitz condition which forces the boundedness of any Palais-Smale sequence of the corresponding energy functional of the equation. As \(g(u): = \lambda {| u |^{p - 2}}u + {| u |^4u}\) with \(2<p\le 4\) does not satisfy the Ambrosetti-Rabinowitz condition (\(\exists \mu > 4, 0 < \mu \int _0^u {g(s)ds \le g(u)u}\)), the boundedness of Palais–Smale sequence becomes a major difficulty in proving the existence of a positive solution. Also, the fact that the function \(g(s)/{s^3}\) is not increasing for \(s > 0\) prevents us from using the Nehari manifold directly as usual. Our result extends the main result in He et al. [18] concerning the existence and concentration of positive solutions to the case where \(f(u) \sim |u{|^{p - 2}}u\) with \(4 < p < 6\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical points theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. D’Ancona, P., Spagnolo, S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 108, 247–262 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benci, V., Cerami, G.: Existence of positive solutions of the equation \( - \Delta u + a(x)u = {u^{\frac{{N + 2}}{{N - 2}}}}\) in \({\mathbb{R}^N}\). J. Funct. Anal. 88, 90–117 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, I existence of a ground state. Arch. Rational Mech. Anal. 82, 313–345 (1983)

    MATH  MathSciNet  Google Scholar 

  6. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, II existence of infinitely many solutions. Arch. Rational Mech. Anal. 82, 347–375 (1983)

    MATH  MathSciNet  Google Scholar 

  7. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Rational Mech. Anal. 185, 185–200 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Byeon, J., Wang, Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations II. Calc. Var. Partial Differ. Equ. 18, 207–219 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chang, K.C.: Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  10. Chen, C.Y., Kuo, Y.C., Wu, T.F.: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cingolani, S., Lazzo, N.: Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Topol. Methods Nonlinear Anal. 10, 1–13 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Figueiredo, G.M., Ikoma, N., Santos, J.R.: Junior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Rational Mech. Anal. 213, 931–979 (2014)

    Article  MATH  Google Scholar 

  13. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gui, C.: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Commun. Partial Differ. Equ. 21, 787–820 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn, vol. 224. Grundlehren Math. Wiss., Springer, Berlin (1983)

  16. Hirata, J., Ikoma, N., Tanaka, K.: Nonlinear scalar field equations in \({\mathbb{R}^N}\): mountain pass and symmetric mountain pass approaches. Topol. Methods Nonlinear Anal. 35, 253–276 (2010)

    MATH  MathSciNet  Google Scholar 

  17. He, Y., Li, G.: The existence and concentration of weak solutions to a class of \(p\)-Laplacian type problems in unbounded domains. Sci. China Math. 57, 1927–1952 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. He, Y., Li, G., Peng, S.: Concentrating Bound States for Kirchhoff type problems in \({\mathbb{R}^3}\) involving critical Sobolev exponents. Adv. Nonlinear Stud. 14, 441–468 (2014)

    MathSciNet  Google Scholar 

  19. He, X., Zou, W.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70, 1407–1414 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a kirchhoff equation in \(\mathbb{R}^3\). J. Differ. Equ. 2, 1813–1834 (2012)

    Article  MathSciNet  Google Scholar 

  21. Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landsman–Lazer-type problem set on \({\mathbb{R}^N}\). Proc. Roy. Soc. Edingburgh Sect. A Math. 129, 787–809 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    Google Scholar 

  23. Li, G.: Some properties of weak solutions of nonlinear scalar field equations. Ann. Acad. Sci. Fenn. A I Math. 15, 27–36 (1990)

    MATH  Google Scholar 

  24. Lions, P.L.: The concentration–compactness principle in the calculus of variations, the locally compact case, part 2. Ann. Inst. H. Poincaré Anal. Non. Linéaire 2, 223–283 (1984)

    Google Scholar 

  25. Lions, P.L.: The concentration–compactness principle in the calculus of variations, the limit case, part 1. Rev. Mat. H. Iberoamericano 1(1), 145–201 (1985)

    Article  MATH  Google Scholar 

  26. Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proceedings of International Symposium, Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977, North-Holland Math. Stud. vol. 30, North-Holland, Amsterdam, 1978, pp. 284–346

  27. Liu, W., He, X.: Multiplicity of high energy solutions for superlinear Kirchhoff equations. J. Appl. Math. Comput. 39, 473–487 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R}^3}\). J. Differ. Equ. 257, 566–600 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Li, G., Ye, H.: Existence of positive solutions for nonlinear Kirchhoff type equations in \({\mathbb{R}^3}\) with critical Sobolev exponent. Math. Meth. Appl. Sci. 37, 2570–2584 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ma, T.F., Munoz, J.E.: Rivera, positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl. Math. Lett. 16, 243–248 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Oh, Y.G.: Existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class \({( V )_a}\). Commun. Partial Differ. Equ. 13, 1499–1519 (1988)

    Article  MATH  Google Scholar 

  32. Oh, Y.G.: Corrections to existence of semi-classical bound states of nonlinear Schrödinger equations with potential on the class \({( V )_a}\). Commun. Partial Differ. Equ. 14, 833–834 (1989)

    MATH  Google Scholar 

  33. Oh, Y.G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131, 223–253 (1990)

    Article  MATH  Google Scholar 

  34. del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MATH  Google Scholar 

  35. Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35, 681–703 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  36. Perera, K., Zhang, Z.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rabinowitz, P.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ramos, M., Wang, Z.Q., Willem, M.: Positive Solutions for Elliptic Equations with Critical Growth in Unbounded Domains, Calculus of Variations and Differential Equations. Chapman & Hall/CRC Press, Boca Raton (2000)

    Google Scholar 

  39. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  MATH  Google Scholar 

  41. Willem, M.: Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston Inc, Boston (1996)

    Google Scholar 

  42. Wang, J., Tian, L., Xu, J., Zhang, F.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253, 2314–2351 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhang, J., Chen, Z., Zou, W.: Standing waves for nonlinear Schrödinger equations involving critical growth, arXiv:1209.3074v1 (2012)

  44. Zhu, X., Yang, J.: Regularity for quasilinear elliptic equations in involving critical Sobolev exponent. System Sci. Math. 9, 47–52 (1989)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to the referee for all insightful comments and valuable suggestions, based on which the paper was revised.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongbao Li.

Additional information

Communicated by P. Rabinowitz.

This work was supported by Natural Science Foundation of China (Grant No. 11371159), Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University # IRT13066.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Li, G. Standing waves for a class of Kirchhoff type problems in \({\mathbb {R}^3}\) involving critical Sobolev exponents. Calc. Var. 54, 3067–3106 (2015). https://doi.org/10.1007/s00526-015-0894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0894-2

Mathematics Subject Classification

Navigation