Skip to main content
Log in

Abstract

We study O(d)-equivariant biharmonic maps in the critical dimension. A major consequence of our study concerns the corresponding heat flow. More precisely, we prove that blowup occurs in the biharmonic map heat flow from \(B^4(0, 1)\) into \(S^4\). To our knowledge, this was the first example of blowup for the biharmonic map heat flow. Such results have been hard to prove, due to the inapplicability of the maximum principle in the biharmonic case. Furthermore, we classify the possible O(4)-equivariant biharmonic maps from \(\mathbf {R}^4\) into \(S^4\), and we show that there exists, in contrast to the harmonic map analogue, equivariant biharmonic maps from \(B^4(0,1)\) into \(S^4\) that wind around \(S^4\) as many times as we wish. We believe that the ideas developed herein could be useful in the study of other higher-order parabolic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Angelsberg, G.: A monotonicity formula for stationary biharmonic maps. Math. Z. 252(2), 287–293 (2006). doi:10.1007/s00209-005-0848-z

    Article  MATH  MathSciNet  Google Scholar 

  2. Chang, K.C., Ding, W.: A result on the global existence for heat flows of harmonic maps from \(D^2\) into \(S^2\). In: Nematics (Orsay, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 332, pp. 37–47. Kluwer Acad. Publ., Dordrecht (1991)

  3. Chang, K.C., Ding, W., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differential Geom. 36(2), pp. 507–515 (1992). http://projecteuclid.org/getRecord?id=euclid.jdg/1214448751

  4. Chang, S.Y.A., Gursky, M., Yang, P.: Regularity of a fourth order nonlinear PDE with critical exponent. Amer. J. Math. 121(2), pp. 215–257 (1999). http://muse.jhu.edu/journals/american_journal_of_mathematics/v121/121.2chang.pdf

  5. Chang, S.Y.A., Wang, L., Yang, P.: A regularity theory of biharmonic maps. Comm. Pure Appl. Math. 52(9), 1113–1137 (1999). doi:10.1002/(SICI)1097-0312(199909)52:9<1113:AID-CPA4>3.0.CO;2-7

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, J., Li, Y.: Homotopy classes of harmonic maps of the stratified 2-spheres and applications to geometric flows. Adv. Math. 263, 357–388 (2014). doi:10.1016/j.aim.2014.07.001

    Article  MATH  MathSciNet  Google Scholar 

  7. Fan, J., Gao, H., Ogawa, T., Takahashi, F.: A regularity criterion to the biharmonic map heat flow in \({\mathfrak{R}}^4\). Math. Nachr. 285(16), 1963–1968 (2012). doi:10.1002/mana.201100243

    Article  MATH  MathSciNet  Google Scholar 

  8. Galaktionov, V., Pohozaev, S.: Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators. Indiana Univ. Math. J. 51(6), 1321–1338 (2002). doi:10.1512/iumj.2002.51.2131

    Article  MATH  MathSciNet  Google Scholar 

  9. Gastel, A.: Singularities of first kind in the harmonic map and Yang-Mills heat flows. Math. Z. 242(1), 47–62 (2002). doi:10.1007/s002090100306

    Article  MATH  MathSciNet  Google Scholar 

  10. Gastel, A.: The extrinsic polyharmonic map heat flow in the critical dimension. Adv. Geom. 6(4), 501–521 (2006). doi:10.1515/ADVGEOM.2006.031

    Article  MATH  MathSciNet  Google Scholar 

  11. Gastel, A., Scheven, C.: Regularity of polyharmonic maps in the critical dimension. Comm. Anal. Geom. 17(2), 185–226 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gastel, A., Zorn, F.: Biharmonic maps of cohomogeneity one between spheres. J. Math. Anal. Appl. 387(1), 384–399 (2012). doi:10.1016/j.jmaa.2011.09.002

    Article  MATH  MathSciNet  Google Scholar 

  13. Goldstein, P., Strzelecki, P., Zatorska-Goldstein, A.: On polyharmonic maps into spheres in the critical dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(4), 1387–1405 (2009). doi:10.1016/j.anihpc.2008.10.008

    Article  MATH  MathSciNet  Google Scholar 

  14. Grotowski, J.: Harmonic map heat flow for axially symmetric data. Manuscripta Math. 73(2), 207–228 (1991). doi:10.1007/BF02567639

    Article  MATH  MathSciNet  Google Scholar 

  15. Hineman, J., Huang, T., Wang, C.Y.: Regularity and uniqueness of a class of biharmonic map heat flows. Calc. Var. Partial Differ Equ 50(3–4), 491–524 (2014). doi:10.1007/s00526-013-0644-2

    Article  MATH  MathSciNet  Google Scholar 

  16. Karcher, H., Wood, J.: Nonexistence results and growth properties for harmonic maps and forms. J. Reine Angew. Math. 353, 165–180 (1984)

    MATH  MathSciNet  Google Scholar 

  17. Ku, Y.: Interior and boundary regularity of intrinsic biharmonic maps to spheres. Pacific J. Math. 234(1), 43–67 (2008). doi:10.2140/pjm.2008.234.43

    Article  MATH  MathSciNet  Google Scholar 

  18. Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Differ Geom. 57(3), pp. 409–441 (2001). http://projecteuclid.org/getRecord?id=euclid.jdg/1090348128

  19. Lamm, T.: Heat flow for extrinsic biharmonic maps with small initial energy. Ann. Global Anal. Geom. 26(4), 369–384 (2004). doi:10.1023/B:AGAG.0000047526.21237.04

    Article  MATH  MathSciNet  Google Scholar 

  20. Lamm, T.: Biharmonic map heat flow into manifolds of nonpositive curvature. Calc. Var. Partial Differ Equ 22(4), 421–445 (2005). doi:10.1007/s00526-004-0283-8

    Article  MATH  MathSciNet  Google Scholar 

  21. Lamm, T., Wang, C.Y.: Boundary regularity for polyharmonic maps in the critical dimension. Adv. Calc. Var. 2(1), 1–16 (2009). doi:10.1515/ACV.2009.001

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu, L., Yin, H.: Neck analysis for biharmonic maps. pre-print (2013). arXiv:1312.4600 [math.AP]

  23. Liu, L., Yin, H.: On the finite time blow-up of biharmonic map flow in dimension four. pre-print (2014). arXiv:1401.6274 [math.AP]

  24. Montaldo, S., Ratto, A.: A general approach to equivariant biharmonic maps. Mediterr. J. Math. 10(2), 1127–1139 (2013). doi:10.1007/s00009-012-0207-3

    Article  MATH  MathSciNet  Google Scholar 

  25. Moser, R.: The blowup behavior of the biharmonic map heat flow in four dimensions. IMRP Int. Math. Res. Pap. 7, 351–402 (2005)

    Article  Google Scholar 

  26. Moser, R.: Weak solutions of a biharmonic map heat flow. Adv. Calc. Var. 2(1), 73–92 (2009). doi:10.1515/ACV.2009.004

    Article  MATH  MathSciNet  Google Scholar 

  27. Perko, L.: Differential equations and dynamical systems, texts in applied mathematics, vol. 7. Springer-Verlag, New York (1991). doi:10.1007/978-1-4684-0392-3

    Book  Google Scholar 

  28. Qing, J., Tian, G.: Bubbling of the heat flows for harmonic maps from surfaces. Comm. Pure Appl. Math. 50(4), 295–310 (1997). doi:10.1002/(SICI)1097-0312(199704)50:4<295:AID-CPA1>3.0.CO;2-5

    Article  MATH  MathSciNet  Google Scholar 

  29. Raphaël, P., Schweyer, R.: Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow. Comm. Pure Appl. Math. 66(3), 414–480 (2013). doi:10.1002/cpa.21435

    Article  MATH  MathSciNet  Google Scholar 

  30. Rupflin, M.: Uniqueness for the heat flow for extrinsic polyharmonic maps in the critical dimension. Comm. Partial Differ Equ 36(7), 1118–1144 (2011). doi:10.1080/03605302.2011.558552

    Article  MATH  MathSciNet  Google Scholar 

  31. Sampson, J.: Some properties and applications of harmonic mappings. Ann. Sci. École Norm. Sup. (4) 11(2), pp. 211–228 (1978). http://www.numdam.org/item?id=ASENS_1978_4_11_2_211_0

  32. Strzelecki, P.: On biharmonic maps and their generalizations. Calc. Var. Partial Differ Equ 18(4), 401–432 (2003). doi:10.1007/s00526-003-0210-4

    Article  MATH  MathSciNet  Google Scholar 

  33. Wang, C.Y.: Biharmonic maps from \({\mathbf{R}}^4\) into a Riemannian manifold. Math. Z. 247(1), 65–87 (2004). doi:10.1007/s00209-003-0620-1

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang, C.Y.: Remarks on biharmonic maps into spheres. Calc. Var. Partial Differ Equ 21(3), 221–242 (2004). doi:10.1007/s00526-003-0252-7

    Article  MATH  Google Scholar 

  35. Wang, C.Y.: Stationary biharmonic maps from \({\mathbb{R}}^m\) into a Riemannian manifold. Comm. Pure Appl. Math. 57(4), 419–444 (2004). doi:10.1002/cpa.3045

    Article  MATH  MathSciNet  Google Scholar 

  36. Wang, C.Y.: Heat flow of biharmonic maps in dimensions four and its application. Pure Appl. Math. Q. 3(2, part 1), 595–613 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang, C.Y.: Well-posedness for the heat flow of biharmonic maps with rough initial data. J. Geom. Anal. 22(1), 223–243 (2012). doi:10.1007/s12220-010-9195-3

    Article  MathSciNet  Google Scholar 

  38. Wang, Z.P., Ou, Y.L., Yang, H.C.: Biharmonic maps from a \(2\)-sphere. J. Geom. Phys. 77, 86–96 (2014). doi:10.1016/j.geomphys.2013.12.005

    Article  MATH  MathSciNet  Google Scholar 

  39. Xu, X., Yang, P.: Conformal energy in four dimension. Math. Ann. 324(4), 731–742 (2002). doi:10.1007/s00208-002-0357-x

    Article  MATH  MathSciNet  Google Scholar 

  40. Zorn, F.: Äquivariante biharmonische Abbildungen. Dissertation, Universität Duisburg-Essen (2013)

Download references

Acknowledgments

This work was undertaken while the author was a PhD student at The University of Queensland, Australia under the supervision of Prof. Joseph Grotowski and Prof. Peter Adams. The author owes much of his success to the advice, guidance, and support of his supervisors. The author would like to thank Prof. Yihong Du, Prof. Dr. Andreas Gastel, Prof. Joseph Grotowski, and the anonymous referees for comments and suggestions that have improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew K. Cooper.

Additional information

Communicated by M. Struwe.

This work was supported by an Australian Postgraduate Award and the Australian Research Council (discovery grant DP120101886).

Appendix

Appendix

Proof

(Lemma 4) (2) \(\Longrightarrow \) (1): This direction is trivial.

(1) \(\Longrightarrow \) (2): We set \(\widetilde{\varPhi }^0_i(s) = (-1)^{i+1} \varPhi ^0_i(-s)\) for \(i \in \{1,2,3,4\}\). Observe that \(\varPhi ^0\) solving (13) is equivalent to \(\widetilde{\varPhi }^0\) solving (13). Therefore, after relabeling \(\widetilde{\varPhi }^0\) as \(\varPhi ^0\) our statement is equivalent to showing that if \(s_0 \in \mathbf {R}\), \(\varPhi ^0 : [s_0, \infty ) \rightarrow \mathbf {R}^4\) solves (13), and

$$\begin{aligned} \lim _{s \rightarrow \infty } \varPhi ^0_1(s) = 0, \end{aligned}$$

then

$$\begin{aligned} \lim _{s \rightarrow \infty } \varPhi ^0(s) = 0. \end{aligned}$$

It is easy to show that if \(x \in C^2([s_0,\infty );\mathbf {R})\), \(x(s) \rightarrow 0\) as \(s \rightarrow \infty \), and \(|\partial _s^2 x(s)| \le C\) for all \(s \in [s_0, \infty )\) then \(\partial _sx(s) \rightarrow 0\) as \(s \rightarrow \infty \). We use this fact, which we call (P1), repeatedly in what follows.

First observe that there cannot exist an \(s_1 \in [s_0, \infty )\) such that \(|\varPhi ^0_3(s)| \ge 1\) for all \(s \in [s_1, \infty )\). Indeed, if there were such an \(s_1\) then eventually \(\varPhi ^0_4(s)\) would be the same sign as \(\varPhi ^0_3\) after which we could apply Lemma 10 and obtain a contradiction.

Therefore, if there is an \(s_1 \in [s_0, \infty )\) such that \(|\varPhi ^0_3(s_1)| \ge 1\) then there must be an \(s_2 > s_1\) such that \(|\varPhi ^0_3(s)| < 1\) for all \(s \in [s_2, \infty )\), or else we could apply Lemma 10 and obtain a contradiction. Therefore, \(\varPhi ^0_3\) is bounded on \([s_0, \infty )\).

Now we proceed to show, one by one, that \(\lim _{s\rightarrow \infty } \varPhi ^0_i(s) = 0\) for \(i \in \{2,3,4\}\). First we look at \(\varPhi ^0_2\). The fact that \(\varPhi ^0_1 \rightarrow 0\) as \(s \rightarrow \infty \), the boundedness of \(\varPhi ^0_3\), and (P1) yield

$$\begin{aligned} \lim _{s \rightarrow \infty } \varPhi ^0_2(s) = 0. \end{aligned}$$

Next, we look at \(\varPhi ^0_3\). Hoping for a contradiction, we assume that \(\varPhi ^0_3(s) \not \rightarrow 0\) as \(s \rightarrow \infty \). From (P1) we know that \(\varPhi ^0_4\) is unbounded, that is, there exists a monotone increasing sequence \(\{s_i\}_{i \in \mathbf {N}} \subset [s_0, \infty )\) diverging to infinity such that \(|\varPhi ^0_4(s_i)| \rightarrow \infty \). From (13) and the fact that \(|(\varPhi ^0_1(s), \varPhi ^0_2(s), \varPhi ^0_3(s))| \le C\) on \([s_0,\infty )\), we have that \(|\partial _s\varPhi ^0_4(s)| \le C\) on \([s_0, \infty )\). Therefore, \(|\varPhi ^0_4(s)| \ge \frac{1}{2} |\varPhi ^0_4(s_i)|\) for \(s \in \left[ s_i, s_i+\frac{1}{2C} |\varPhi ^0_4(s_i)|\right] \). Observe that over this interval \(\varPhi ^0_4\) is non-vanishing. Therefore, there exists an \(s \in [s_0,\infty )\) such that \(|\varPhi ^0_3(s)| \ge 1\) and \(\varPhi ^0_3(s)\) has the same sign as \(\varPhi ^0_4(s) \ne 0\). Lemma 10 then yields a contradiction, hence

$$\begin{aligned} \lim _{s \rightarrow \infty } \varPhi ^0_3(s) = 0. \end{aligned}$$

Finally, we look at \(\varPhi ^0_4\). Since

$$\begin{aligned} \lim _{s \rightarrow \infty } (\varPhi ^0_1(s), \varPhi ^0_2(s), \varPhi ^0_3(s)) = 0, \end{aligned}$$

from (13), we have \(\partial _s\varPhi ^0_4(s) \rightarrow 0\) as \(s \rightarrow \infty \). Now (P1) gives us

$$\begin{aligned} \lim _{s \rightarrow \infty } \varPhi ^0_4(s) = 0. \end{aligned}$$

\(\square \)

Remark 6

Observe that in the above proof we make use of Lemma 10. Our argument would be circular if Lemma 10 depended upon Lemma 4. By closely examining the proof of Lemma 10, it is clear that this is not the case.

Proof

(Lemma 6) We prove this lemma for \(c_0 = \frac{99}{100}\). It is elementary to compute

$$\begin{aligned} \min _{x \in \mathbf {R}} f(x) = -\frac{1}{12} \sqrt{169+38 \sqrt{19}}. \end{aligned}$$

Since f is an odd function, we have

$$\begin{aligned} |f(y)| \le \frac{1}{12} \sqrt{169+38 \sqrt{19}} \le 2\quad \text{ for } \text{ all } y \in \mathbf {R}. \end{aligned}$$

We differentiate:

$$\begin{aligned} \partial _x Q(x;f(y)) = \frac{3 (9+21 \cos (2x)+2 f(y) \sin (2x))}{(7+3 \cos (2x))^2}. \end{aligned}$$

By periodicity, what we wish to prove is that \(\partial _xQ(x;f(y)) \le c_0\) for all \(x \in \left( -\frac{\pi }{2}, \frac{\pi }{2}\right] \) and \(y \in \mathbf {R}\).

Firstly, \(\partial _xQ\left( \frac{\pi }{2};f(y)\right) < 0\) which means we may restrict our attention to \(x \in \left( -\frac{\pi }{2}, \frac{\pi }{2}\right) \). We use Weierstrass’ substitution:

$$\begin{aligned} \sin (2x) \mapsto \frac{2t}{1+t^2} \text{ and } \cos (2x) \mapsto \frac{1-t^2}{1+t^2} \quad \text{ for } t \in \mathbf {R}. \end{aligned}$$

This transforms the problem into showing that

$$\begin{aligned} \frac{3 (15+2 (\widetilde{f}-3 t) t) \left( 1+t^2\right) }{2 \left( 5+2 t^2\right) ^2} \le c_0, \end{aligned}$$

for all \(t \in \mathbf {R}\) and \(\widetilde{f} \in [-2,2]\). It suffices to show

$$\begin{aligned} -45+50 c_0+(-27+40 c_0) t^2+(18+8 c_0) t^4-12 (t+ t^3) \ge 0, \end{aligned}$$
(33)

for all \(t \in \mathbf {R}\). Next we prove this.

We substitute \(c_0 = \frac{99}{100}\) into (33) and let p be the polynomial on the left hand side of the resulting expression, that is,

$$\begin{aligned} p(t) = \frac{648}{25} t^4-12 t^3+\frac{63}{5} t^2-12 t+\frac{9}{2}. \end{aligned}$$

We calculate:

$$\begin{aligned} p'\left( \frac{2}{5}\right) < 0, \; p'\left( \frac{43}{100}\right) > 0, \quad \text{ and } \quad p''(t) > 0, \end{aligned}$$

for \(t \in \mathbf {R}\). Therefore, p is convex with its unique global minimum occurring somewhere in \(\left[ \frac{2}{5}, \frac{43}{100}\right] \). We use this to estimate:

$$\begin{aligned} \min _{t \in \mathbf {R}} p(t) \ge \frac{648}{25} \left( \frac{2}{5}\right) ^4-12 \left( \frac{43}{100}\right) ^3+\frac{63}{5} \left( \frac{2}{5}\right) ^2-12 \left( \frac{43}{100}\right) +\frac{9}{2} > 0. \end{aligned}$$

This is what we wished to show. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooper, M.K. Critical O(d)-equivariant biharmonic maps. Calc. Var. 54, 2895–2919 (2015). https://doi.org/10.1007/s00526-015-0888-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0888-0

Mathematics Subject Classification

Navigation