Skip to main content
Log in

Sequential weak approximation for maps of finite Hessian energy

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Consider the space \(W^{2,2}(\Omega ;N)\) of second order Sobolev mappings \(\ v\ \) from a smooth domain \(\Omega \subset \mathbb {R}^m\) to a compact Riemannian manifold N whose Hessian energy \(\int _\Omega |\nabla ^2 v|^2\, dx\) is finite. Here we are interested in relations between the topology of N and the \(W^{2,2}\) strong or weak approximability of a \(W^{2,2}\) map by a sequence of smooth maps from \(\Omega \) to N. We treat in detail \(W^{2,2}(\mathbb {B}^5,\mathbb {S}^3)\) where we establish the sequential weak \(W^{2,2}\) density of \(W^{2,2}(\mathbb {B}^5,\mathbb {S}^3)\,\cap \,{\mathcal C}^\infty \). The strong \(W^{2,2}\) approximability of higher order Sobolev maps has been studied in the recent paper of Bousquet et al. (J. Eur. Math. Soc. (JEMS) 17(4), 763–817, 2015). For an individual map \(v\in W^{2,2}(\mathbb {B}^5,\mathbb {S}^3)\), we define a number L(v) which is approximately the total length required to connect the isolated singularities of a strong approximation u of v either to each other or to \(\partial Bx^5\). Then \(L(v)=0\) if and only if v admits \(W^{2,2}\) strongly approximable by smooth maps. Our critical result, obtained by constructing specific curves connecting the singularities of u, is the bound \(\ L(u)\le c+c\int _{\mathbb {B}^5}|\nabla ^2 u|^2\, dx\ \). This allows us to construct, for the given Sobolev map \(v\in W^{2,2}(\mathbb {B}^5,\mathbb {S}^3)\), the desired \(W^{2,2}\) weakly approximating sequence of smooth maps. To find suitable connecting curves for u, one uses the twisting of a u pull-back normal framing on a suitable level surface of u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We have recently become aware of a preprint [7] of Bethuel which addresses the failure of sequential weak density for \(W^{1.3}(\mathbb {B}^m,\mathbb {S}^2)\) for \(m\ge 4\).

References

  1. Adams, R.: Sobolev Spaces, 2nd edn. Academic Press, New York (1975)

  2. Alberti, G., Baldo, S., Orlandi, G.: Functions with prescribed singularities. J. Eur. Math. Soc. 5, 275–311 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Almgren, F., Browder, W., Lieb, E.H.: Co-area, liquid crystals, and minimal surfaces. In: Partial Differential Equations (Tianjin 1986), Lecture Notes in Mathematics, vol. 1306, Springer, Berlin (1988)

  4. Bethuel, F., Brezis, H., Coron, J.-M.: Relaxed energies for harmonic maps. In: Variational methods, Progr. Nonlin. Diff. Eqns. Appl., vol. 4, pp. 37–52. Birkhauser, Boston (1990)

  5. Bethuel, F., Coron, J.-M., Demengel, F., Hélein, F.: A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds. In: Nematics (Orsay, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 332, pp. 15–23. Kluwer, Dordrecht (1991)

  6. Bethuel, F.: A characterization of maps in H1(B3, S2) which can be approximated by smooth maps. Ann. Inst. H. Poincar Anal. Non Linéaire 7(4), 269–286 (1990)

    MATH  MathSciNet  Google Scholar 

  7. Bethuel, F.: A counterexample to the weak density of smooth maps between manifolds in Sobolev spaces (2014). arXiv:1401.1649

  8. Bethuel, F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 167(3–4), 153–206 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bethuel, F., Zheng, X.M.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80(1), 60–75 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bousquet, P., Ponce, A., Van Schaftigen, J.: Strong density for higher order Sobolev spaces into compact manifolds. J. Eur. Math. Soc. (JEMS) 17(4), 763–817 (2015)

    Article  MathSciNet  Google Scholar 

  11. Bousquet, P., Ponce, A., Van Schaftigen, J.: Density of smooth maps for fractional Sobolev spaces \(W^{s, p}\) into \(\ell \) simply connected manifolds when \(s {\>}1\). Conflu. Math. 5(2), 322 (2013)

    Article  Google Scholar 

  12. Bredon, G.: Topology and Geometry. In: Graduate Texts in Mathematics, Springer, Berlin (1993)

  13. Brezis, H., Coron, J.-M., Lieb, E.: Harmonic maps with defects. Commun. Math. Phys. 107, 649–705 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  15. Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations I, II. In: Ergebnisse der mathematik und ihrer grenzgebiete. A series of modern surveys in mathematics, pp. 37, 38. Springer, Berlin (1998)

  16. Giaquinta, M., Modica, G., Souček, J.: The Dirichlet energy of mappings with values into the sphere. Manuscr. Math. 65, 489–507 (1989)

    Article  MATH  Google Scholar 

  17. Hajlasz, P.: Approximation of Sobolev mappings. Nonlinear Anal. 22(12), 1579–1591 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hang, F.: On the weak limits of smooth maps for the Dirichlet energy between manifolds. Commun. Anal. Geom. 13(5), 929–938 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hang, F., Lin, F.H.: Topology of Sobolev mappings. Math. Res. Lett. 8(3), 321–330 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hang, F., Lin, F.H.: Topology of Sobolev mappings. II. Acta Math. 191(1), 55107 (2003)

    Article  MathSciNet  Google Scholar 

  21. Hardt, R., Rivière, T.: Connecting topological Hopf singularities. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 2(2), 287–344 (2003)

    MATH  Google Scholar 

  22. Hardt, R., Lin, F.H.: A remark on H1 mappings. Manuscr. Math. 56(1), 1–10 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hardt, R., Rivière, T.: Connecting rational homotopy type singularities. Acta Math. 200(1), 15–83 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Meyer, Y., Rivière, T.: Partial Regularity for a class of stationary Yang–Mills Fields. Rev. Math. Iberoam. 19, 195–219 (2003)

    Article  MATH  Google Scholar 

  25. Milnor, J., Stasheff, J.: Characteristic Classes. Princeton University Press, Princeton (1974)

    MATH  Google Scholar 

  26. Pakzad, M.R., Rivière, T.: Weak density of smooth maps for the Dirichlet energy between manifolds. Geom. Funct. Anal. 13(1), 223–257 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schoen, R., Uhlenbeck, K.: Approximation theorems for Sobolev mappings (1984, preprint)

  28. White, B.: Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta. Math. 160, 1–17 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hardt.

Additional information

Communicated by L. Ambrosio.

R. Hardt was partially supported by NSF Grant DMS1207702.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardt, R., Rivière, T. Sequential weak approximation for maps of finite Hessian energy. Calc. Var. 54, 2713–2749 (2015). https://doi.org/10.1007/s00526-015-0881-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0881-7

Mathematics Subject Classification

Navigation