Skip to main content
Log in

Multiple brake orbits in \(m\)-dimensional disks

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \((M,g)\) be a (complete) Riemannian surface, and let \(\Omega \subset M\) be an open subset whose closure is homeomorphic to a disk. We prove that if \(\partial \Omega \) is smooth and it satisfies a strong concavity assumption, then there are at least two distinct orthogonal geodesics in \(\overline{\Omega }=\Omega \bigcup \partial \Omega \). Using the results given in Giambò et al. (Adv Differ Eq 10:931–960, 2005), we then obtain a proof of the existence of two distinct brake orbits for a class of Hamiltonian systems. In our proof we shall use recent deformation results proved in Giambò et al. (Nonlinear Anal Ser A Theory Methods Appl 73:290–337, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. One can choose \(\phi \) such that \(\vert \phi (q)\vert ={\mathrm {dist}}(q,\partial \Omega )\) for all \(q\) in a (closed) neighborhood of \(\partial \Omega \).

  2. Observe that, with our definition of \(\phi \), then \(\nabla \phi \) is a normal vector to \(\partial \Omega \) pointing outwards from \(\Omega \).

  3. By geometrically distinct curves we mean curves having distinct images as subsets of \(\overline{\Omega }\).

  4. The map \(\widetilde{H}^1(\mathbb S^1\times \mathbb S^1)\rightarrow \widetilde{H}^1(\Delta ^1)\) is induced by the diagonal inclusion of \(\mathbb S^1\) into \(\mathbb S^1\times \mathbb S^1\). It takes both generators \(\pi _1^*(\omega )\) and \(\pi _2^*(\omega )\) of \(H^1(\mathbb S^1\times \mathbb S^1)\) to the generator \(\omega \) of \(H^1(\mathbb S^1)\cong H^1(\Delta ^1)\).

References

  1. Bos, W.: Kritische Sehenen auf Riemannischen Elementarraumstücken. Math. Ann. 151, 431–451 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  2. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  3. Fadell, E., Husseini, S.: Relative cohomological index theories. Adv. Math 64, 1–31 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fournier, G., Willem, M.: Multiple solutions of the forced double pendulum equation. Ann. Inst. H. Poincaré Anal. non Lineaire 6(suppl), 259–281 (1989)

    MATH  MathSciNet  Google Scholar 

  5. Giambò, R., Giannoni, F.: Minimal geodesics on manifolds with discontinuous metrics. J. Lond. Math. Soc. 67, 527 (2003)

    Article  MATH  Google Scholar 

  6. Giambò, R., Giannoni, F., Piccione, P.: Orthogonal geodesic chords, brake orbits and homoclinic orbits in Riemannian manifolds. Adv. Differ. Eq. 10, 931–960 (2005)

    MATH  Google Scholar 

  7. Giambò, R., Giannoni, F., Piccione, P.: Existence of orthogonal geodesic chords on Riemannian manifolds with concave boundary and homeomorphic to the \(N\)-dimensional disk. Nonlinear Anal. Ser. A Theory Methods Appl. 73, 290–337 (2010)

    Article  MATH  Google Scholar 

  8. Giambò, R., Giannoni, F., Picione, P.: Multiple brake orbits and homoclinics in Riemannian manifolds. Arch. Ration. Mech. Anal. 200(2), 691–724 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Giannoni, F.: Multiplicity of principal bounce trajectories with prescribed minimal period on Riemannian manifolds. Differ. Int. Eq. 6, 1451–1480 (1993)

    MATH  MathSciNet  Google Scholar 

  10. Gluck, H., Ziller, W.: Existence of periodic motions of conservative systems. In: Bombieri, E. (ed) Seminar on Minimal Surfaces, pp. 65–98. Princeton University Press, NJ (1983)

  11. Liu, H., Long, Y.: Resonance identity for symmetric closed characteristics on symmetric convex Hamiltonian energy hypersurfaces and its applications. J. Differ. Eq. 255, 29522980 (2013)

    MathSciNet  Google Scholar 

  12. Liu, C., Zhang, D.: Seifert conjecture in the even convex case Comm. Pure Appl. Math. 67, 1563–1604 (2014)

    Article  MATH  Google Scholar 

  13. Long, Y., Zhang, D., Zhu, C.: Multiple brake orbits in bounded convex symmetric domains. Adv. Math. 203(2), 568–635 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Long, Y., Zhu, C.: Closed characteristics on compact convex hypersurfaces in \(\mathbb{R}^{2n}\). Ann. Math. (2) 155(2), 317–368 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lusternik, L., Schnirelman, L.: Methodes Topologiques dans les Problemes Variationelles. Hermann (1934)

  16. Mahwin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1988)

    Google Scholar 

  17. Palais, R.: Homotopy theory on infinite dimensional manifolds. Topology 5, 1–16 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rabinowitz, P.H.: Critical point theory and applications to differential equations: a survey. In: Topological nonlinear analysis. Progr. Nonlinear Differential Equations Appl., vol. 15, pp. 464–513. Birkhauser, Boston (1995)

  19. Seifert, H.: Periodische bewegungen machanischer systeme. Math. Z. 51, 197–216 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  20. Struwe, M.: Variational methods. In: Applications to nonlinear partial differential equations and Hamiltonian systems, 3rd edn. Springer, Berlin (2000)

  21. Zhang, D.: Brake type closed characteristics on reversible compact convex hypersurfaces in \(\mathbb{R}^{2n}\). Nonlinear Anal. 74, 31493158 (2011)

    Google Scholar 

  22. Zhang, D., Liu, C.: Multiplicity of brake orbits on compact convex symmetric reversible hypersurfaces in \(\mathbb{R}^{2n}\) for \(n \ge 4\). Proc. Lond. Math. Soc. (3) 107, 138 (2013)

    Article  Google Scholar 

  23. Zhang, D., Liu, C.: Multiple brake orbits on compact convex symmetric reversible hypersurfaces in \(\mathbb{R}^{2n}\). Ann. Inst. H. Poincaré Anal. Non Linéaire 31(3), 531–554 (2014)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Giannoni.

Additional information

Communicated by P. Rabinowitz.

Appendix A. An estimate on the relative category

Appendix A. An estimate on the relative category

Let \(n\ge 1\) be an integer; \(\mathbb S^n\) is the \(n\)-dimensional sphere, and \(\Delta ^n\subset \mathbb S^n\times \mathbb S^n\) is the diagonal. We want to estimate the relative Lusternik–Schnirelman category of the pair \((\mathbb S^n\times \mathbb S^n,\Delta ^n)\), and to this aim we will prove an estimate on the relative cuplength of the pair.

For a topological space \(X\) and an integer \(k\ge 0\), we will denote by \(H^k(X)\) and \(\widetilde{H}^k(X)\) respectively the \(k\)th singular cohomology and the \(k\)th reduced singular cohomology group of \(X\). For a topological pair \((X,Y)\), \(H^k(X,Y)\) is the \(k\)th relative singular cohomology group of the pair; in particular, \(H^k(X,\emptyset )=H^k(X)\). Given \(\alpha \in H^p(X,Y)\) and \(\beta \in H^q(X,Z)\), \(\alpha \cup \beta \in H^{p+q}(X,Y\bigcup Z)\) will denote the cup product of \(\alpha \) and \(\beta \); recall that \(\alpha \cup \beta =(-1)^{pq}\beta \cup \alpha \).

The notion of relative cuplength, here recalled, will be also used.

Definition 10.1

The number \({\mathrm {cuplength}}(X,Y)\) is the largest positive integer \(k\) for which there exists \(\alpha _0\in H^{q_0}(X,Y)\) (\(q_0\ge 0\)) and \(\alpha _i\in H^{q_i}(X)\), \(i=1,\ldots ,k\) such that

$$\begin{aligned} q_i\ge 1,\quad \forall \; i=1,\ldots ,k, \end{aligned}$$

and

$$\begin{aligned} \alpha _0\cup \alpha _1\cup \cdots \cup \alpha _k\ne 0\quad \text {in}\quad H^{q_0+q_1+\cdots +q_k}(X,Y), \end{aligned}$$

where \(\cup \) denotes the cup product.

As for the absolute Lusternik–Schirelmann category, we have the following estimate of relative category by means of relative cuplenght, cf. e.g. [3, 4]

Proposition 10.2

\({\mathrm {cat}}_{\mathbb S^n \times \mathbb S^n,\Delta ^n}(\mathbb S^n \times \mathbb S^n) \ge {\mathrm {cuplength}}(\mathbb S^n\times \mathbb S^n,\Delta ^n) + 1\).

Therefore, to prove that \(cat_{\mathbb S^n \times \mathbb S^n,\Delta ^n}(\mathbb S^n \times \mathbb S^n) \ge 2\) it will be sufficient to prove the following

Proposition 10.3

For all \(n\ge 1\), \({\mathrm {cuplength}}(\mathbb S^n\times \mathbb S^n,\Delta ^n)\ge 1\).

Proof

The statement is equivalent to proving the existence of \(p\ge 0\), \(q\ge 1\), \(\alpha \in H^p(\mathbb S^n\times \mathbb S^n,\Delta ^n)\) and \(\beta \in H^q(\mathbb S^n\times \mathbb S^n)\) such that \(\alpha \cup \beta \ne 0\). This will follow immediately from the Lemma below. \(\square \)

Lemma 10.4

For \(n\ge 1\), the group \(H^{2n}(\mathbb S^n\times \mathbb S^n, \Delta ^n)\) is isomorphic to \(\mathbb {Z}\), and the map \(H^n(\mathbb S^n\times \mathbb S^n,\Delta ^n) \times H^n(\mathbb S^n\times \mathbb S^n)\ni (\alpha ,\beta )\mapsto \alpha \cup \beta \in H^{2n}(\mathbb S^n\times \mathbb S^n, \Delta ^n)\) is surjective.

Proof

It is well known that \(H^k(\mathbb S^n)\cong \mathbb {Z}\) for \(k=0,n\), and \(H^k(\mathbb S^n)=0\) if \(k\ne 0,n\). It follows \(H^n(\mathbb {S}^n\times \mathbb {S}^n)\cong \bigoplus _{k=0}^nH^k(\mathbb S^n)\otimes H^{n-k}(\mathbb S^n)\cong \mathbb {Z}\oplus \mathbb {Z}\). If \(\omega \) is a generator of \(H^n(\mathbb S^n)\), then the two generators of \(H^n(\mathbb S^n\times \mathbb S^n)\cong \mathbb {Z}\oplus \mathbb {Z}\) are \(\pi _1^*(\omega )\) and \(\pi _2^*(\omega )\), where \(\pi _1,\pi _2:\mathbb S^n\times \mathbb S^n\rightarrow \mathbb S^n\) are the projections.

For the computation of \(H^n(\mathbb S^n\times \mathbb S^n,\Delta ^n)\), we use the long exact sequence of the pair \((\mathbb S^n\times \mathbb S^n,\Delta ^n)\) in reduced cohomology:

$$\begin{aligned} \cdots \longrightarrow \widetilde{H}^{n-1}(\Delta ^n)\longrightarrow H^n(\mathbb S^n\times \mathbb S^n,\Delta ^n)\longrightarrow \widetilde{H}^n(\mathbb S^n\times \mathbb S^n)\mathop {\longrightarrow }\limits ^{\mathfrak i^*}\widetilde{H}^n(\Delta ^n)\longrightarrow \cdots \end{aligned}$$

Since \(\Delta ^n\) is homeomorphic to \(\mathbb S^n\), then \(\widetilde{H}^{n-1}(\Delta ^n)=0\). Thus, the group \(H^n(\mathbb S^n\times \mathbb S^n,\Delta ^n)\) can be identified with the subgroup of \(\widetilde{H}^n(\mathbb S^n\times \mathbb S^n)\) given by the kernel of the map \(\mathfrak i^*:\widetilde{H}^n(\mathbb S^n\times \mathbb S^n)\rightarrow \widetilde{H}^n(\Delta ^n)\). This map takes each of the two generators \(\pi _i^*(\omega )\), \(i=1,2\), to \(\omega \) (here we identify \(\Delta ^n\) with \(\mathbb S^n\)), so that \(H^n(\mathbb S^n\times \mathbb S^n,\Delta ^n)\) is the subgroup of \(\widetilde{H}^n(\mathbb S^n\times \mathbb S^n)\) generated by \(\pi _1^*(\omega )-\pi _2^*(\omega )\), which is isomorphic to \(\mathbb {Z}\).

Finally, let us compute \(H^{2n}(\mathbb S^n\times \mathbb S^n,\Delta )\) using again the long exact sequence of the pair \((\mathbb S^n\times \mathbb S^n,\Delta ^n)\) in reduced cohomology:

$$\begin{aligned} \cdots \longrightarrow \widetilde{H}^{2n-1}(\Delta ^n)\longrightarrow H^{2n}(\mathbb S^n\times \mathbb S^n,\Delta ^n)\longrightarrow \widetilde{H}^{2n}(\mathbb S^n\times \mathbb S^n)\mathop {\longrightarrow }\limits ^{\mathfrak i^*}\widetilde{H}^{2n}(\Delta ^n)\longrightarrow \cdots \end{aligned}$$

Clearly, \(\widetilde{H}^{2n}(\Delta ^n)=0\), and if \(n>1\), also \(\widetilde{H}^{2n-1}(\Delta ^n)=0\). When \(n=1\), then \(\widetilde{H}^{2n-1}(\Delta ^n)=\widetilde{H}^1(\Delta ^1)\cong \mathbb {Z}\), however the map \(\widetilde{H}^1(\Delta ^1)\rightarrow \widetilde{H}^2(\mathbb S^1\times \mathbb S^1)\) is identically zero, because the previous map of the exact sequence \(\widetilde{H}^1(\mathbb S^1\times \mathbb S^1)\rightarrow \widetilde{H}^1(\Delta ^1)\) is clearly surjective.Footnote 4 In both cases, \(n=1\) or \(n>1\), we obtain \(H^{2n}(\mathbb S^n\times \mathbb S^n,\Delta ^n)\cong \widetilde{H}^{2n}(\mathbb S^n\times \mathbb S^n)\cong \mathbb {Z}\). A generator of \(\widetilde{H}^{2n}(\mathbb S^n\times \mathbb S^n)\) is \(\pi _1^*(\omega )\cup \pi _2^*(\omega )\).

In conclusion, using the above identifications, the map \(H^n(\mathbb S^n\times \mathbb S^n,\Delta ^n) \times H^n(\mathbb S^n\times \mathbb S^n)\ni (\alpha ,\beta )\mapsto \alpha \cup \beta \in H^{2n}(\mathbb S^n\times \mathbb S^n, \Delta ^n)\) reads as the bilinear map \(\mathbb {Z}\times (\mathbb {Z}\oplus \mathbb {Z})\rightarrow \mathbb {Z}\) that takes \(\big (1,(1,0)\big )\) to \((-1)^{n+1}\) and \(\big (1,(0,1)\big )\) to \(1\). This is clearly surjective. \(\square \)

From Propositions 10.2 and 10.3 we get:

Corollary 10.5

For all \(n\ge 1\), \({\mathrm {cat}}_{\mathbb S^n \times \mathbb S^n}(\mathbb S^n \times \mathbb S^n,\Delta ^n)\ge 2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giambò, R., Giannoni, F. & Piccione, P. Multiple brake orbits in \(m\)-dimensional disks. Calc. Var. 54, 2553–2580 (2015). https://doi.org/10.1007/s00526-015-0875-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0875-5

Mathematics Subject Classification

Navigation