Skip to main content
Log in

Boundary estimates for non-negative solutions to non-linear parabolic equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is mainly devoted to the boundary behavior of non-negative solutions to the equation

$$\begin{aligned} \mathrm{H }u =\partial _tu-\nabla \cdot \mathrm{A }(x,t,\nabla u) = 0 \end{aligned}$$

in domains of the form \(\Omega _T=\Omega \times (0,T)\) where \(\Omega \subset \mathbb R^n\) is a bounded non-tangentially accessible (NTA) domain and \(T>0\). The assumptions we impose on \(A\) imply that \(H\) is a non-linear parabolic operator with linear growth. Our main results include a backward Harnack inequality, and the Hölder continuity up to the boundary of quotients of non-negative solutions vanishing on the lateral boundary. Furthermore, to each such solution one can associate a natural Riesz measure supported on the lateral boundary and one of our main result is a proof of the doubling property for this measure. Our results generalize, to the setting of non-linear equations with linear growth, previous results concerning the boundary behaviour, in Lipschitz cylinders and time-independent NTA-cylinders, established for non-negative solutions to equations of the type \(\partial _tu-\nabla \cdot (\mathrm{A }(x,t)\nabla u)=0\), where \(\mathrm{A }\) is a measurable, bounded and uniformly positive definite matrix-valued function. In the latter case the measure referred to above is essentially the caloric or parabolic measure associated to the operator and related to Green’s function. At the end of the paper we also remark that our arguments are general enough to allow us to generalize parts of our results to general fully non-linear parabolic partial differential equations of second order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G., Serrin, J.: Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25, 81–122 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauman, P.: Positive solutions of elliptic equations in nondivergence form and their adjoints. Ark. Mat. 22(2), 153–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banerjee, A., Garofalo, N.: Boundary behavior of nonnegative solutions of fully nonlinear parabolic equations. Manuscr. Math. (2014). doi: 10.1007/s00229-014-0682-x

  4. Bennewitz, B., Lewis, J.: On the dimension of \(p\)-harmonic measure. Ann. Acad. Sci. Fenn. 30, 459–505 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Carleson, L.: On the existence of boundary values for harmonic functions in several variables. Ark. Math. 4(5), 393–399 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Fabes, E., Mortola, S., Salsa, S.: Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana J. Math 30(4), 621–640 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crandall, M., Kocan, M., Swiech, A.: \(L^p\)-theory for fully nonlinear uniformly parabolic equations. Commun. Partial Differ. Equ. 25, 1997–2053 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. DiBenedetto, E.: On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13(3), 487–535 (1986)

    MathSciNet  MATH  Google Scholar 

  9. DiBenedetto, E.: Degenerate parabolic equations. Universitext. Springer, New York (1993)

    Book  MATH  Google Scholar 

  10. Frentz, M., Garofalo, N., Götmark, E., Munive, I., Nyström, K.: Non-divergence form parabolic equations associated with non-commuting vector fields: boundary behavior of nonnegative solutions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(2), 437–474 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Fabes, E., Garofalo, N., Marin-Malave, S., Salsa, S.: Fatou theorems for some nonlinear elliptic equations. Rev. Mat. Iberoam. 4(2), 227–251 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fabes, E., Garofalo, N., Salsa, S.: A backward Harnack inequality and Fatou theorem for non-negative solutions of parabolic equations. Illinois J. Math. 30(4), 536–565 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Fabes, E., Kenig, C.: Examples of singular parabolic measures and singular transition probability densities. Duke Math. J. 48(4), 845–856 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fabes, E., Safonov, M.: Behaviour near the boundary of positive solutions of second order parabolic equations. J. Fourier Anal. Appl. 3, 871–882 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fabes, E., Safonov, M., Yuan, Y.: Behavior near the boundary of positive solutions of second order parabolic equations. Trans. Am. Math. Soc. II 351, 4947–4961 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fabes, E., Stroock, D.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96(4), 327–338 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garofalo, N.: Second order parabolic equations in nonvariational forms: boundary Harnack principle and comparison theorems for non-negative solutions. Ann. Mat. Pura Appl. 138, 267–296 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hörmander, L.: The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Classics in Mathematics. Springer, Berlin (2003)

    MATH  Google Scholar 

  19. Hofmann, S., Lewis, J., Nyström, K.: Caloric measure in parabolic flat domains. Duke Math. J. 122, 281–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jerison, D., Kenig, C.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46, 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Korte, R., Kuusi, T., Parviainen, M.: A connection between a general class of superparabolic functions and supersolutions. J. Evol. Equ. 10(1), 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kilpeläinen, T., Lindqvist, P.: On the Dirichlet boundary value problem for a degenerate parabolic equation. SIAM J. Math. Anal. 27(3), 661–683 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuusi, T., Mingione, G., Nyström, K.: A boundary Harnack inequality for singular equations of p-parabolic type. Proc. Am. Math. Soc. 142(8), 2705–2719 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krylov, N., Safonov, M.: A property of the solutions of parabolic equations with measurable coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 44(1), 161–175 (1980)

    MathSciNet  Google Scholar 

  25. Lewis, J., Lundström, N.L.P., Nyström, K.: Boundary harnack inequalities for operators of \(p\)-laplace type in reifenberg flat domains. Perspectives in PDE, harmonic analysis, and applications, Proceedings of Symposia in Pure Mathematics 79, 229–266 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Lewis, J., Nyström, K.: Boundary behaviour for \( p \)-harmonic functions in lipschitz and starlike lipschitz ring domains. Annales Scientifiques de L’Ecole Normale Superieure 40, 765–813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lewis, J., Nyström, K.: Boundary behaviour of \(p\)-harmonic functions in domains beyond lipschitz domains. Adv. Calc. Var. 1, 133–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lewis, J., Nyström, K.: Boundary behaviour and the martin boundary problem for \( p \)-harmonic functions in Lipschitz domains. Annals Math. 172, 1907–1948 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lewis, J., Nyström, K.: Regularity of Lipschitz free boundaries in two-phase problems for the \(p\)-Laplace operator. Adv. Math. 225, 2565–2597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of parabolic type. (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence (1968)

    Google Scholar 

  31. Nyström, K.: The Dirichlet problem for second order parabolic operators. Indiana Univ. Math. J. 46, 183–245 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nyström, K.: A backward in time Harnack inequality for non-negative solutions to fully non-linear parabolic equations. Riv. Mat. Univ. Parma (N.S.) 5(1), 1–14 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Salsa, S.: Some properties of nonnegative solution to parabolic differential equations. Ann. Mat. Pura Appl. 128, 193–206 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  34. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs, 4. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  35. Safonov, M., Yuan, Y.: Doubling properties for second order parabolic equations. Ann. Math. (2) 150(1), 313–327 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, L.: On the regularity theory of fully nonlinear parabolic equations: I. Commun. Pure Appl. Math. 45, 27–76 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, L.: On the regularity theory of fully nonlinear parabolic equations: II. Commun. Pure Appl. Math. 45, 141–178 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ziemer, W.P.: Regularity of weak solutions of parabolic variational inequalities. Trans. Am. Math. Soc. 309(2), 763–786 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håkan Persson.

Additional information

Communicated by L. Caffarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyström, K., Persson, H. & Sande, O. Boundary estimates for non-negative solutions to non-linear parabolic equations. Calc. Var. 54, 847–879 (2015). https://doi.org/10.1007/s00526-014-0808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0808-8

Mathematics Subject Classification

Navigation