On local well-posedness of the thin-film equation via the Wasserstein gradient flow

Article
  • 149 Downloads

Abstract

A local existence and uniquness of the gradient flow of one dimensional Dirichlet energy on the Wasserstein space is proved. The proofs are based on a relaxation of displacement convexity in the Wasserstein space and can be applied to a family of higher order energy functionals which are not displacement convex in the standard sense. As the result a local well-posedness of the corresponding nonlinear evolution equations including the thin-film equation and the quantum drift diffusion equation are proved.

Mathematics Subject Classification

49Q20 35A01 76A20 49J52 

References

  1. 1.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, second edition (2008)Google Scholar
  2. 2.
    Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bonilla, L.L., Escobedo, R.: Wigner-Poisson and nonlocal drift-diffusion model equations for semiconductor superlattices. arXiv:cond-mat/0503109 (2005)
  4. 4.
    Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44(4), 375–417 (1991)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Carrillo, J.A., Slepčev, D.: Example of a displacement convex functional of first order. Calc. Var. Partial Differ. Equ. 36(4), 547–564 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Düring, B., Matthes, D., Milišić, J.P.: A gradient flow scheme for nonlinear fourth order equations. Disc. Contin. Dyn. Syst. Ser. B 14(3), 935–959 (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Figalli, A., Kim, Y.H., McCann, R.: Regularity of optimal transport maps on multiple products of spheres. To appear in J. Eur. Math. Soc. (JEMS) (2014)Google Scholar
  8. 8.
    Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)Google Scholar
  9. 9.
    Ma, X.N., Trudinger, N.S., Wang, X.-J.: Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177(2), 151–183 (2005)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    McCann, R.J.: A convexity theory for interacting gases and equilibrium crystals. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.). Princeton University (1994)Google Scholar
  11. 11.
    Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26(1–2), 101–174 (2001)CrossRefMATHGoogle Scholar
  12. 12.
    Villani, C.: Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003)Google Scholar
  13. 13.
    Villani, C.: Optimal transport, old and new, volume 338 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsCalifornia State University, East BayHaywardUSA

Personalised recommendations