Skip to main content

Advertisement

Log in

A quantitative estimate for mappings of bounded inner distortion

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish a quantitative version of distortion inequality for mappings of bounded inner distortion. Some applications to the integral form of the isoperimetric inequality are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  2. Astala, K., Iwaniec, T., Martin, G.: Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series, vol. 48. Princeton University Press, Princeton (2009)

  3. Astala, K., Iwaniec, T., Saksman, E.: Beltrami operators in the plane. Duke Math. J. 107(1), 27–56 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ball, J.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1976/1977)

    Google Scholar 

  5. Boccardo, L., Quelques problèmes de Dirichlet avec données dans de grands espaces de Sobolev. C. R. Acad. Sci. Paris Sér. I Math. 325(12), 1269–1272 (1997)

  6. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87(1), 149–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boccardo, L., Gallouët, T., Orsina, L.: Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré Anal. Non Linéaire 13(5), 539551. 35J65 (1996)

    Google Scholar 

  8. Carozza, M., Moscariello, G., Passarelli di Napoli, A.: Nonlinear equations with growth coefficients in BMO. Houston J. Math. 28(4), 917–929 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Cianchi, A.: A quantitative Sobolev inequality in BV. J. Funct. Anal. 237(2), 466–481 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Csörnyei, M., Hencl, S., Maly, J.: Homeomorphisms in the Sobolev space \(W^{1, n-1}\). J. Reine Angew. Math. 644, 221–235 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Dolzmann, G., Hungerbühler, N., Müller, S.: Uniqueness and maximal regularity for nonlinear elliptic systems of \(n\)-Laplace type with measure valued right hand side. J. Reine Angew. Math. 520, 1–35 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fiorenza, A., Sbordone, C.: Existence and uniqueness results for solutions of nonlinear equations with right hand side in \(L^1\). Studia Math. 127(3), 223–231 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative Sobolev inequality for functions of bounded variation. J. Funct. Anal. 244(1), 315–341 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fusco, N., Moscariello, G., Sbordone, C.: The limit of \(W^{1,1}\) homeomorphism with finite distortion. Calc. Var. Partial Differ. Equ. 33(3), 377–390 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Greco, L., Iwaniec, T., Sbordone, C.: Inverting the \(p\)-harmonic operator. Manuscr. Math. 92(2), 249–258 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iwaniec, T.: Projections onto gradient fields and \(L^p\)-estimates for degenerated elliptic operators. Studia Math. 75(3), 293–312 (1983)

    MathSciNet  MATH  Google Scholar 

  17. Iwaniec, T., Martin, G.: Geometric function theory and non linear analysis. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2001)

    Google Scholar 

  18. Iwaniec, T., Martin, G.: Quasiregular mappings in even dimensions. Acta Math. 170, 29–81 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 119, 129–143 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iwaniec, T., Sbordone, C.: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143–161 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Iwaniec, T., Sbordone, C.: Quasiharmonic fields. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 519–572 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Iwaniec, T., Sbordone, C.: Caccioppoli estimates and very weak solutions of elliptic equations. Rend. Mat. Acc. Lincei 14, 189–205 (2003)

    Google Scholar 

  23. Kilpeläinen, T., Li, G.: Estimates for p-Poisson equations. Differ. Integr. Equ. 13(4–6), 791–800 (2000)

    MATH  Google Scholar 

  24. Lewis, J.: On very weak solutions of certain elliptic systems. Commun. Partial Differ. Equ. 18, 1515–1537 (1993)

    Article  MATH  Google Scholar 

  25. Mingione, G.: The Calderón–Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6, 195–261 (2007)

    Google Scholar 

  26. Mingione, G.: Gradient estimates below the duality exponent. Math. Ann. 346(3), 571–627 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moscariello, G., Passarelli di Napoli, A.: The regularity of the inverses of Sobolev homeomorphisms with finite distortion. J. Geom. Anal. (2012). doi:10.1007/s12220-012-9345-x

  28. Müller, S., Qi, T., Yan, B.S.: On a new class of elastic deformations not allowing for cavitation. Ann. Inst. H. Poincaré Anal. Non Linéaire 11(2), 217–243 (1994)

    MATH  Google Scholar 

  29. Murat, F.: Equations elliptiques non linéaires avec second membre \(L^1\) ou mesure. Actes du 26ème congrès national d’analyse numérique (Les Karellis, juin 1994), pp. A12–A24

  30. Reshetnyak, YuG: Some geometrical properties of functions and mappings with generalized derivatives. Sibirsk. Math. Zh. (Russian) 7, 886–919 (1966)

    Google Scholar 

  31. Serrin, J.: Pathological solutions of elliptic differential equations. Ann. Sc. Norm. Sup. Pisa 18, 385–387 (1964)

    Google Scholar 

  32. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier Grenoble 15, 189–258 (1965)

    Google Scholar 

  33. Šverák, V.: Regularity properties of deformations with finite energy. Arch. Ration. Mech. Anal. 100(2), 105–127 (1988)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referee for carefully reading the manuscript and for the useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gioconda Moscariello.

Additional information

Communicated by L.Ambrosio.

This research has been supported by the 2008 ERC Advanced Grant 226234 “Analytic Techniques for Geometric and Functional Inequalities” and by the National Research Project PRIN 2010–2011 “Calculus of Variations”.

Appendix

Appendix

We prove (24). We recall the following algebraic inequality

$$\begin{aligned} 2 \left\langle |\xi |^{p-2}\xi - |\zeta |^{p-2}\zeta , \xi - \zeta \right\rangle \ge \left( |\xi |^{p-2}+|\zeta |^{p-2} \right) |\xi -\zeta |^2, \end{aligned}$$
(93)

for all \(\xi ,\zeta \in {\mathbb {R}}^n\). Consider the positive square root of \(A(x)\), a symmetric positive definite matrix \(\sqrt{A(x)}\) such that \(\sqrt{A(x)} \cdot \sqrt{A(x)} = A(x)\) for a.e \(x \in \varOmega \). Thus

$$\begin{aligned} \left\langle A(x)\xi ,\xi \right\rangle = \left\langle \sqrt{A(x)}\xi ,\sqrt{A(x)}\xi \right\rangle = \left| \sqrt{A(x)}\xi \right| ^2 \end{aligned}$$

Now,

$$\begin{aligned}&\left\langle {\mathcal { H}} (x,\xi ) - {\mathcal { H}} (x,\zeta ),\xi -\zeta \right\rangle \\&\quad = \left\langle \left| \sqrt{A(x)} \xi \right| ^{p-2} \sqrt{A(x)} \xi - \left| \sqrt{A(x)} \zeta \right| ^{p-2} \sqrt{A(x)} \zeta , \sqrt{A(x)} \xi - \sqrt{A(x)} \zeta \right\rangle \\&\quad \ge \frac{1}{2} \left( \left| \sqrt{A(x)} \xi \right| ^{p-2} + \left| \sqrt{A(x)} \zeta \right| ^{p-2} \right) \left| \sqrt{A(x)} \xi -\sqrt{A(x)} \zeta \right| ^2 \\&\quad \ge \frac{a^p}{2} |\xi -\zeta |^2 \left( |\xi |^{p-2}+|\zeta |^{p-2} \right) \end{aligned}$$

The proof of (24) follows similarly, by using the algebraic inequality

$$\begin{aligned} \left| |\xi |^{p-2} \xi - |\zeta |^{p-2} \zeta \right| \le (p-1) |\xi -\zeta | \left( |\xi |+|\zeta |\right) ^{p-2}, \end{aligned}$$
(94)

for all \(\xi ,\zeta \in {\mathbb {R}}^n\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farroni, F., Moscariello, G. A quantitative estimate for mappings of bounded inner distortion. Calc. Var. 51, 657–676 (2014). https://doi.org/10.1007/s00526-013-0690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0690-9

Keywords

Mathematics Subject Classification (2000)

Navigation