Skip to main content
Log in

Energy-minimal diffeomorphisms between doubly connected Riemann surfaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(M\) and \(N\) be doubly connected Riemann surfaces with boundaries and with nonvanishing conformal metrics \(\sigma \) and \(\rho \) respectively, and assume that \(\rho \) is a smooth metric with bounded Gauss curvature \({\mathcal {K}}\) and finite area. The paper establishes the existence of homeomorphisms between \(M\) and \(N\) that minimize the Dirichlet energy. Among all homeomorphisms \(f :M{\overset{{}_{ \tiny {\mathrm{onto}} }}{\longrightarrow }} N\) between doubly connected Riemann surfaces such that \({{\mathrm{Mod\,}}}M \leqslant {{\mathrm{Mod\,}}}N\) there exists, unique up to conformal automorphisms of M, an energy-minimal diffeomorphism which is a harmonic diffeomorphism. The results improve and extend some recent results of Iwaniec et al. (Invent Math 186(3):667–707, 2011), where the authors considered bounded doubly connected domains in the complex plane w.r. to Euclidean metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Lectures on quasiconformal mappings, 2nd edn. University Lecture Series, vol. 38. American Mathematical Society, Providence (2006). With supplemental chapters by C.J. Earle, I. Kra, M. Shishikura and J.H. Hubbard

  2. Astala, K., Iwaniec, T., Martin, G.J.: Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195(3), 899–921 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  4. Choi, H., Treibergs, A.: Gauss maps of spacelike constant mean curvature hypersurfaces of Minkowski space. J. Differ. Geom. 32, 775–817 (1990)

    MATH  MathSciNet  Google Scholar 

  5. Hamilton, R.: Harmonic maps of manifolds with boundary. Lecture Notes in Mathematics, vol. 471, i+168 pp. Springer, Berlin (1975)

  6. Hencl, S., Koskela, P.: Regularity of the inverse of a planar Sobolev homeomorphism. Arch. Ration. Mech. Anal. 180(1), 75–95 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hencl, S., Malý, J.: Jacobians of Sobolev homeomorphisms. Calc. Var. 38, 233–242 (2010)

    Article  MATH  Google Scholar 

  8. Heinz, E.: On certain nonlinear elliptic differential equations and univalent mappings. J. d’ Anal. Math. 5 197–272 (1956/1957)

    Google Scholar 

  9. Heinz, E.: Existence theorems for one-to-one mappings associated with elliptic systems of second order. I. J. d’ Anal. Math. 5, 15(1), 325–352 (1965)

    Google Scholar 

  10. Hildebrandt, S., Kaul, H., Widman, K.-O.: An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math. 138(1–2), 1–16 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hildebrandt, S., Nitsche, J.C.C.: A uniqueness theorem for surfaces of least area with partially free boundaries on obstacles. Arch. Ration. Mech. Anal. 79(3), 189–218 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Iwaniec, T., Kovalev, L.V., Onninen, J.: The Nitsche conjecture. J. Am. Math. Soc. 24(2), 345–373 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Iwaniec, T., Kovalev, L.V., Onninen, J.: Harmonic mapping problem and affine capacity. Proc. R. Soc. Edinb. Sect. A 141(5), 1017–1030 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Iwaniec, T., Kovalev, L.V., Onninen, J.: Hopf differentials and smoothing Sobolev homeomorphisms. Int. Math. Res. Not. IMRN 2012(14), 3256–3277 (2012)

    MATH  MathSciNet  Google Scholar 

  15. Iwaniec, T., Koh, N.-T., Kovalev, L.V., Onninen, J.: Existence of energy-minimal diffeomorphisms between doubly connected domains. Invent. Math. 186(3), 667–707 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jost, J.: Harmonic maps between surfaces. Lecture Notes in Mathematics, vol. 1062, x+133 pp. Springer, Berlin (1984)

  17. Jost, J.: Minimal surfaces and Teichmüller theory. In: Yau, S.-T. (ed.), Tsing Hua Lectures on Geometry and Analysis, Taiwan, 1990–91, pp. 149–211. International Press, Cambridge (1997)

  18. Jost, J.: Univalency of harmonic mappings between surfaces. J. Reine Angew. Math. 324, 141–153 (1981)

    MATH  MathSciNet  Google Scholar 

  19. Jost, J.: Two-dimensional geometric variational problems. Wiley, Chichester (1991)

    MATH  Google Scholar 

  20. Jost, J., Schoen, R.: On the existence of harmonic diffeomorphisms. Invent. Math. 66(2), 353–359 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kalaj, D.: Harmonic maps between annuli on Riemann surfaces. Israel J. Math. 182, 123–147 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kalaj, D.: Deformations of annuli on Riemann surfaces with smallest mean distortion. ArXiv:1005.5269

  23. Kalaj, D., Mateljević, M.: Inner estimate and quasiconformal harmonic maps between smooth domains. Journal d’Analyse Math. 100, 117–132 (2006)

    Article  MATH  Google Scholar 

  24. Kalaj, D.: Quasiconformal harmonic mapping between Jordan domains. Math. Z. 260(2), 237–252 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kalaj, D.: Harmonic mappings and distance function. Ann. Scuola Norm. Sup. Pisa Cl. Sci X(5), 1–13 (2011)

    MathSciNet  Google Scholar 

  26. Lehto, O., Virtanen, K.: Quasiconformal mappings in the plane. Springer, New York (1973)

    Book  MATH  Google Scholar 

  27. Lloyd, N.G.: Degree theory. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  28. Malý, J., Martio, O.: Lusin’s condition (N) and mappings of the class \(W^{1, n}\). J. Reine Angew. Math. 458, 19–36 (1995)

    MATH  MathSciNet  Google Scholar 

  29. Marković, V., Mateljević, M.: A new version of the main inequality and the uniqueness of harmonic maps. J. Anal. Math. 79, 315–334 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mateljević, M., Vuorinen, M.: On harmonic quasiconformal quasi-isometries. J. Inequal. Appl. 2010, 19 (2010), Article ID 178732. doi:10.1155/2010/178732

  31. Nitsche, J.C.C.: On the modulus of doubly connected regions under harmonic mappings. Am. Math. Mon. 69, 781–782 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pavlović, M.: Boundary correspondence under harmonic quasiconformal homeomorfisms of the unit disc. Ann. Acad. Sci. Fenn. 27, 365–372 (2002)

    MATH  Google Scholar 

  33. Ruh, E., Vilms, J.: The tension field of the Gauss map. Trans. Am. Math. Soc. 149, 569–573 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schoen, R., Yau, S.T.: Lectures on Harmonic Maps. International Press, Cambridge (1997)

    MATH  Google Scholar 

  35. Whyburn, G.T.: Analytic Topology. American Mathematical Society, New York (1942)

    MATH  Google Scholar 

Download references

Acknowledgments

I thank Professor Leonid Kovalev for very useful discussion about the subject of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kalaj.

Additional information

Communicated by J. Jost.

Appendix

Appendix

Here we give two important metrics for which the results of this section can be stated in a more explicit way.

Example 10.1

Let \(\rho \) be the Riemann metric \(\rho =\frac{2}{1+|z|^2}.\) Equation (1.1) becomes

$$\begin{aligned} u_{z\bar{z}}-\frac{2\bar{u}}{1+|u|^2}u_z\cdot u_{\bar{z}}=0. \end{aligned}$$
(10.1)

Notice this important example. The Gauss map of a surface \(\Sigma \) in \(\mathbb {R}^3\) sends a point on the surface to the corresponding unit normal vector \(\mathbf {n}\in \overline{\mathbb {C}} \cong S^2\). In terms of a conformal coordinate \(z\) on the surface, if the surface has constant mean curvature, its Gauss map \(\mathbf {n}: \Sigma \mapsto \overline{\mathbb {C}}\), is a Riemann harmonic map [33]. Since

$$\begin{aligned} \int \limits _{{\mathbb {C}}}\rho ^2(w)dudv=4\pi , \end{aligned}$$

it follows that the Riemann metric is allowable for every double connected domain (bounded or unbounded).

Example 10.2

If \(u:{\mathbb {U}}\mapsto {\mathbb {U}}\) is a harmonic mapping with respect to the hyperbolic metric \(\lambda =\dfrac{2}{1-|z|^2}\) then Euler-Lagrange equation of \(u\) is

$$\begin{aligned} u_{z\bar{z}}+\frac{2\bar{u}}{1-|u|^2}u_z\cdot u_{\bar{z}}=0. \end{aligned}$$
(10.2)

An important example of hyperbolic harmonic mapping is the Gauss map of a space-like surfaces with constant mean curvature \(H\) in the Minkowski \(3\)-space \(M^{2,1}\) (see [4]). This metric is allowable in compact bounded domains in \({\mathbb {U}}\) but for every \(r<1\), the integral \(\int _{A(r,1)}\lambda ^2(w)dudv\) diverges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalaj, D. Energy-minimal diffeomorphisms between doubly connected Riemann surfaces. Calc. Var. 51, 465–494 (2014). https://doi.org/10.1007/s00526-013-0683-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0683-8

Mathematics Subject Classification (2000)

Navigation