Skip to main content
Log in

Differentiability in the Sobolev space \(W^{1,n-1}\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset {\mathbb {R}}^{n}\) be a domain, \(n \ge 2\). We show that a continuous, open and discrete mapping \(f \in W_{\mathrm{loc }}^{1,n-1}(\Omega , {\mathbb {R}}^{n})\) with integrable inner distortion is differentiable almost everywhere on \(\Omega \). As a corollary we get that the branch set of such a mapping has measure zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astala, K., Iwaniec, T., Martin, G.J., Onninen, J.: Extremal mappings of finite distortion. Proc. Lond. Math. Soc. 91(3), 655–702 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Csörnyei, M., Hencl, S., Malý, J.: Homeomorphisms in the Sobolev space \(W^{1, n-1}\). J. Reine Angew. Math. 644, 221–235 (2010)

    MATH  MathSciNet  Google Scholar 

  3. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    Google Scholar 

  4. Federer, H.: Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, 2nd edn. Springer, New York (1996)

  5. Fuglede, B.: Extremal length and functional completion. Acta Math. 98, 171–219 (1957)

    Google Scholar 

  6. Gehring, F.W.: Extremal length definitions for the conformal capacity in space. Michigan Math. J. 9, 137–150 (1962)

    Google Scholar 

  7. Gehring, F.W., Lehto, O.: On the total differentiability of functions of a complex variable. Ann. Acad. Sci. Fenn. Ser. A. I 272, 1–9 (1959)

    Google Scholar 

  8. Gustin, W.: Boxing inequalities. J. Math. Mech. 9, 229–239 (1960)

    MATH  MathSciNet  Google Scholar 

  9. Gol’dstein, V., Vodop’yanov, S.: Quasiconformal mappings and spaces of functions with generalized first derivatives. Sibirsk. Mat. Z. 17, 515–531 (1976)

    MathSciNet  Google Scholar 

  10. Hencl, S., Koskela, P.: Regularity of the inverse of a planar Sobolev homeomorphism. Arch. Ration. Mech. Anal. 180, 75–95 (2006)

    Google Scholar 

  11. Hencl, S., Koskela, P., Malý, J.: Regularity of the inverse of a Sobolev homeomorphism in space. Proc. R. Soc. Edinb. Sect. 136A(6), 1267–1285 (2006)

    Google Scholar 

  12. Hencl, S., Koskela, P., Onninen, J.: Homeomorphism of bounded variation. Arch. Ration. Mech. Anal. 186, 351–360 (2007)

    Google Scholar 

  13. Hencl, S., Rajala, K.: Optimal assumptions for discreteness (2011, preprint)

  14. Hersch, J.: Longeurs extremales dans l’espace, resistance electrique et capacit. C. R. Acad. Sci. Paris 238, 1639–1641 (1954)

    MATH  MathSciNet  Google Scholar 

  15. Iwaniec, T., Koskela, P., Onninen, J.: Mappings of finite distortion: Monotonicity and continuity. Invent. Math. 144, 507–531 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Iwaniec, T., Martin, G.J.: Geometric Function Theory and Non-Linear Analysis. Oxford Mathematical Monographs. Clarendon Press, Oxford (2001)

  17. Iwaniec, T., Šverák, V.: On mappings with integrable dilation. Proc. Am. Math. Soc. 118, 181–188 (1993)

    Google Scholar 

  18. Kauhanen, J., Koskela, P., Malý, J.: Mappings of finite distortion: discreteness and openness. Arch. Ration. Mech. Anal. 160, 135–151 (2001)

    Google Scholar 

  19. Kauhanen, J., Koskela, P., Malý, J., Onninen, J., Zhong, X.: Mappings of fnite distortion: Sharp Orlicz-conditions. Rev. Mat. Iberoamericana 19, 857–872 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Koskela, P., Malý, J.: Mappings of finite distortion: the zero set of the Jacobian. J. Eur. Math. Soc. 5(2), 95–105 (2003)

    Google Scholar 

  21. Koskela, P., Onninen, J.: Mappings of finite distortion: capacity and modulus inequalities. J. Reine Angew. Math. 599, 1–26 (2006)

    Google Scholar 

  22. Kruglikov, V.I.: Capacity of condensers and spatial mappings quasiconformal in the mean. J. Math. USSR-Sb. 58, 185–205 (1987)

    Google Scholar 

  23. Malý, J.: A simple proof of the Stepanovs theorem on differentiability almost everywhere. Expos. Math. 17, 59–61 (1999)

    Google Scholar 

  24. Malý, J.: Lectures on Change of Variables in Integral, Preprint 305. University of Helsinki, Department of Mathematics (2001)

  25. Manfredi, J., Villamor, E.: Mappings with integrable dilatation in higher dimensions. Bull. Am. Math. Soc. 32(2), 235–240 (1995)

    Google Scholar 

  26. Manfredi, J., Villamor, E.: An extension of Reshetnyak’s theorem. Indiana Univ. Math. J. 47(3), 1131–1145 (1998)

    Google Scholar 

  27. Martio, O., Rickman, S., Väisälä, J.: Definitions for quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A1 Math. 448, 1–40 (1969)

    Google Scholar 

  28. Martio, O., Ryazanov, V., Srebro, U., Yakubov, E.: Moduli in Modern Mapping Theory. Springer Monographs in Mathematics. Springer, New York (2009)

    Google Scholar 

  29. Menchoff, D.: Sur les differentielles totales des fonctions univalentes. Math. Ann. 105(1), 75–85 (1931)

    Article  MathSciNet  Google Scholar 

  30. Moscariello, G., Passarelli, A.: The regularity of the inverse of Sobolev homeomorphism with finite distortion. Expo. Math. 17, 59–61 (1999)

    Google Scholar 

  31. Onninen, J.: Regularity of the inverse of spatial mappings with finite distortion. Cal. Var. Partial Differ. Equ. 26(3), 331–341 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Poletsky, E.A.: The modulus method for non-homeomorphic quasiconformal mappings. Mat. Sb. 83(125), 261–272 (1970)

    MathSciNet  Google Scholar 

  33. Rajala, K.: Local homeomorphism property of spatial quasiregular mappings with distortion close to one. Geom. Funct. Anal. 15(5), 1100–1127 (2005)

    Google Scholar 

  34. Reshetnyak, Y.G.: Space Mappings with Bounded Distortion, Transl. Math. Monographs, vol. 73. AMS, Providence (1989)

  35. Rickman, S.: Quasiregular Mappings. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  36. Šabat, B.B.: The modulus method in space. Dokl. Akad. Nauk. SSSR 130, 1210–1213 (1960) [Soviet Math. Dokl. 1, 165–168 (1960)]

    Google Scholar 

  37. Salimov, R.R., Sevost’yanov, E.A.: ACL and differentiability of open discrete ring \((p, Q)\)-mappings. Mat. Stud. 35(1), 28–36 (2011)

  38. Stepanov, V.: Sur les conditions de l’existence de la differentielle totale. Mat. Sb. 32, 487–489 (1924) (in Russian)

    Google Scholar 

  39. Väisälä, J.: Two new characterizations for quasiconformality. Ann. Acad. Sci. Fenn. Ser. A I 362, 1–12 (1965)

    Google Scholar 

  40. Väisälä, J.: Lectures on \(n\)-Dimensional Quasiconformal Mappings. Lecture Notes in Math., vol. 229. Springer, Berlin (1971)

  41. Ziemer, W.P.: Some lower bounds for Lebesgue area. Pac. J. Math. 19, 381–390 (1966)

    Google Scholar 

  42. Ziemer, W.P.: Extremal length and conformal capacity. Trans. Am. Math. Soc. 126(3), 460–473 (1967)

    Google Scholar 

  43. Ziemer, W.P.: Extremal length and \(p\)-capacity. Michigan Math. J. 16, 43–51 (1969)

Download references

Acknowledgments

The author was supported by the Academy of Finland. Part of the research was done while the author was visiting at the University of Michigan. He would like to thank the department for its hospitality. The author would like to thank Jani Onninen and Kai Rajala for their many useful comments on the manuscript. The author thanks the referee for very careful reading of the paper and many useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville Tengvall.

Additional information

Communicated by J. Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tengvall, V. Differentiability in the Sobolev space \(W^{1,n-1}\) . Calc. Var. 51, 381–399 (2014). https://doi.org/10.1007/s00526-013-0679-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0679-4

Mathematics Subject Classification (2010)

Navigation